Abstract:
Novel compositions useful as fluid gelling agents, especially for use in subterranean applications such as drilling fluids, are prepared by reacting an aqueous dispersion of a clay, such as bentonite, with an aqueous gel of a monodispersed mixed metal layered hydroxide of the formula Li.sub.m D.sub.d T(OH).sub.(m+2d+3+na) A.sup.n.sub.a.H.sub.2 O, where x is zero or more representing excess water of hydration, where D is a divalent metal, such as Mg, T is a trivalent metal, such as Al, and A represents other monovalent or polyvalent anions, the formula being described in detail in the disclosure.
Abstract:
Piston deposits resulting from neutralizing combustion acids present in the lubricating oil circulating within the lubrication system of an internal combustion engine are reduced or eliminated by first cntacting the acids with a soluble weak base in the piston ring zone of the engine to form soluble neutral salts containing the weak base and the combustion acids. Thereafter, the neutral salts are contacted with a heterogenous strong base immobilized within the lubrication system but outside of the piston ring zone. The strong base displaces the weak base from the neutral salts, returning the weak base to the oil for recirculation to the piston ring zone for further use. The remaining strong base/combustion adic salts are immobilized as deposits with the strong base rather than on the piston. In a preferred embodiment, trioctadecyl amine is the weak base and magnesium oxide is the strong base.
Abstract:
The present invention provides an environmentally friendly grease composition. The base components of this lubricating composition include a white mineral oil in the amount of about 65 to about 85% by weight based on total weight of the composition, an extreme pressure additive comprising a solid friction modifier in an amount of about 1 to about 20 wt %, a thickener and a minor amount of one or more oil dispersible additives in amounts sufficient to enhance the performance characteristics of the greases. Each of the extreme pressure additive, thickener, and the one or more oil dispersible additives is essentially free of heavy metals, particularly arsenic, antimony, barium, cadmium, chromium, copper, iron, lead, mercury, molybdenum, nickel, selenium, vanadium and zinc. The greases of the present invention meet or exceed the EPA acceptance standards in effect during 1991 which are defined by the static sheen test and the 96-hour Mysidopsis bahia (shrimp) tests for offshore and inland water use.
Abstract:
Disclosed are electrorheological fluids including vermiculite treated with an amine salt, methods of making the same, propylene carbonate adsorbed on the solid phase, butyl benzoate added for the liquid phase, and methods of using frequency response of electrorheological fluids to vary apparent viscosity and to compensate for temperature.
Abstract:
Novel compositions useful as fluid gelling agents, especially for use in subterranean applications such as drilling fluids, are prepared by reacting an aqueous dispersion of a clay, such as bentonite, with an aqueous gel of a monodispersed mixed metal layered hydroxide of the formula Li.sub.m D.sub.d T(OH).sub.(m+2d+3+na) A.sub.J.sup.n where D is a divalent metal, such as Mg, T is a trivalent metal, such as Al, and A represents other monovalent or polyvalent anions, the formula being described in detail in the disclosure.
Abstract:
A method for improving the shear stability of a multipurpose grease containing(i) a lubricating oil,(ii) a lithium soap of an hydroxy fatty acid,(iii) a polyhydric alcohol having at least three hydroxy groups, and(iv) at least two metal hydrocarbylthiophosphate compounds in which the metal is different in at least two compounds,is disclosed which comprises incorporating at least a major portion of the polyhydric alcohol into the mixture of lubricating oil and lithium soap of an hydroxy fatty acid and before the metal hydrocarbylthiophosphate compounds are added during the grease preparation process. Preferred ingredients are 12-hydroxystearic acid, glycerol, antimony dialkyldithiophosphate, and zinc dialkyldithiophosphate.
Abstract:
A composite material comprising a resin other than polyamide resin and a layered silicate dispersed therein, said layered silicate having a layer thickness of 7 to 12 .ANG. and an interlayer distance of 30 .ANG. or above. Owing to the layered silicate uniformly dispersed in the resin matrix, the composite material is superior in mechanical characteristics and heat resistance. It also has good water resistance and chemical resistance.
Abstract:
Use is made of crystalline alkali metal aluminum silicates of the zeolite type, having the formula (A.sub.2 O).sub.x.sup..multidot. Al.sub.2 O.sub.3.sup..multidot. (SiO.sub.2).sub.y wherein A=alkali metal, x has a value of 0.7-1.5 and y has a value of 0.8-4 and having a particle size between 0.1 and 100 .mu.m in an aqueous metal working fluid composition.
Abstract:
A high performance ballistic grease is used in ammunition and a lubricating process to protect the barrel of a weapon from corrosion and overheating. The ballistic grease, ammunition, and process improve the structural integrity and accuracy of the weapon and are economical, nontoxic, effective, and safe. The preferred ballistic lubricating grease comprises a polyalphaolefin base oil, an amorphous silicon dioxide thickener, and a disodium octaborate tetrahydrate additive.
Abstract:
A lubricant additive for gear oils and an improved gear oil are disclosed. The additive comprises about 0.01 to about 65 percent, by weight, of solid lubricant particles selected from the group consisting of molybdenum disulfide, graphite, cerium fluoride, zinc oxide, tungsten disulfide, mica, boron nitrate, boron nitride, borax, silver sulfate, cadmium iodide, lead iodide, barium fluoride, tin sulfide, fluorinated carbon, PTFE, intercalated graphite, zinc phosphide, zinc phosphate, and mixtures thereof; combined with about 0.1 to about 25 percent, by weight, of a stabilizing agent consisting of an ethylene-propylene copolymer; and a fluid carrier. The lubricant additive provides the gear oil with improved demulsibility, stability, and compatibility characteristics of the gear oil when contaminated with water.