Abstract:
An eFUSE is formed with a gate stack including a layer of embedded silicon germanium (eSiGe) on the polysilicon. An embodiment includes forming a shallow trench isolation (STI) region in a substrate, forming a first gate stack on the substrate for a PMOS device, forming a second gate stack on an STI region for an eFUSE, forming first embedded silicon germanium (eSiGe) on the substrate on first and second sides of the first gate stack, and forming second eSiGe on the second gate stack. The addition of eSiGe to the eFUSE gate stack increases the distance between the eFUSE debris zone and an underlying metal gate, thereby preventing potential shorting.
Abstract:
A method and structure are disclosed for a defect free Si:C source/drain in an NFET device. A wafer is accepted with a primary surface of {100} crystallographic orientation. A recess is formed in the wafer in such manner that the bottom surface and the four sidewall surfaces of the recess are all having {100} crystallographic orientations. A Si:C material is eptaxially grown in the recess, and due to the crystallographic orientations the defect density next to each of the four sidewall surfaces is essentially the same as next to the bottom surface. The epitaxially filled recess is used in the source/drain fabrication of an NFET device. The NFET device is oriented along the crystallographic direction, and has the device channel under a tensile strain due to the defect free Si:C in the source/drain.
Abstract:
In one exemplary embodiment, a program storage device readable by a machine, tangibly embodying a program of instructions executable by the machine for performing operations, said operations including: depositing a first layer having a first metal on a surface of a semiconductor structure, where depositing the first layer creates a first intermix region at an interface of the first layer and the semiconductor structure; removing a portion of the deposited first layer to expose the first intermix region; depositing a second layer having a second metal on the first intermix region, where depositing the second layer creates a second intermix region at an interface of the second layer and the first intermix region; removing a portion of the deposited second layer to expose the second intermix region; and performing at least one anneal on the semiconductor structure.
Abstract:
A method of fabricating a semiconductor device with back side conductive plugs is provided here. The method begins by forming a gate structure overlying a semiconductor-on-insulator (SOI) substrate. The SOI substrate has a support layer, an insulating layer overlying the support layer, an active semiconductor region overlying the insulating layer, and an isolation region outboard of the active semiconductor region. A first section of the gate structure is formed overlying the isolation region and a second section of the gate structure is formed overlying the active semiconductor region. The method continues by forming source/drain regions in the active semiconductor region, and thereafter removing the support layer from the SOI substrate. Next, the method forms conductive plugs for the gate structure and the source/drain regions, where each of the conductive plugs passes through the insulating layer.
Abstract:
Methods and devices are provided for fabricating a semiconductor device having barrier regions within regions of insulating material resulting in outgassing paths from the regions of insulating material. A method comprises forming a barrier region within an insulating material proximate the isolated region of semiconductor material and forming a gate structure overlying the isolated region of semiconductor material. The barrier region is adjacent to the isolated region of semiconductor material, resulting in an outgassing path within the insulating material.
Abstract:
An NMOS transistor is formed with improved manufacturability. An embodiment includes forming N-type doped embedded silicon germanium containing carbon (eSiGe:C) in source/drain regions of a substrate, and amorphizing the eSiGe:C. The use of eSiGe:C provides a reduction in extension silicon and dopant loss, improved morphology, increased wafer throughput, improved short channel control, and reduced silicide to source/drain contact resistance.
Abstract:
A method for forming an alternate conductive path in semiconductor devices includes forming a silicided contact in a source/drain region adjacent to an extension diffusion region and removing sidewall spacers from a gate structure. A metal layer is formed over a portion of the extension diffusion region in a substrate layer to intermix metal from the metal layer with the portion of the extension region without annealing the metal layer. An unmixed portion of the metal layer is removed. The alternate conductive path is formed on the extension diffusion region with intermixed metal by thermal processing after the unmixed portion of the metal layer has been removed.
Abstract:
A short channel semiconductor device is formed with halo regions that are separated from the bottom of the gate electrode and from each other. Embodiments include implanting halo regions after forming source/drain regions and source/drain extension regions. An embodiment includes forming source/drain extension regions in a substrate, forming source/drain regions in the substrate, forming halo regions under the source/drain extension regions, after forming the source drain regions, and forming a gate electrode on the substrate between the source/drain regions. By forming the halo regions after the high temperature processing involved informing the source/drain and source/drain extension regions, halo diffusion is minimized, thereby maintaining sufficient distance between halo regions and reducing short channel NMOS Vt roll-off.
Abstract:
An tri-axis accelerometer is disclosed. The tri-axis accelerometer includes a mass, a first group of capacitance, a third group of capacitance being neighbor to the first group of capacitance. The mass defines an upper surface, a lower surface parallel to the upper surface and a side wall connecting the upper surface and the lower surface. The first group of capacitance includes a first movable electrode and the third group of capacitance includes a third movable electrode. The first movable electrode is perpendicular to the third movable electrode.
Abstract:
A method for forming a silicide contact includes depositing a metal layer on silicon such that the metal layer intermixes with the silicon to form an intermixed region on the silicon; removing an unintermixed portion of the metal layer from the intermixed region; and annealing the intermixed region to form a silicide contact on the silicon. A semiconductor device comprising a silicide contact located over a silicon layer of the semiconductor device, the silicide contact comprising nickel (Ni) and silicon (Si) and having Ni amount equivalent to a thickness of about 21 angstroms or less.