摘要:
This invention relates to an antireflective layer (ARL) which has both good absorption capability and low reflectivity at the photoresist/ARL interface. The ARL also significantly reduces CD variation in exposed photoresist film. The ARL of the present invention comprises an organic base resin having fine carbon particles dispersed therein. The combination of the organic base resin and fine carbon particles provide both good absorption and low reflectivity. The present invention is also related to a process of forming a semiconductor by applying an antireflection layer to the surface of a substrate, forming a photoresist layer on the antireflection layer, and selectively exposing the substrate to ultraviolet light, wherein the antireflective layer is an organic resin having carbon particles dispersed therein.
摘要:
The processing of a semiconductor body front side surface can be monitored in-situ, and thickness data for a body can be obtained ex-situ, by directing an infrared beam at the back side surface of the body. The light is reflected from front and back sides of a body portion to form primary and secondary reflections which are detected. An interference signal representative of interference fringes of the primary and secondary reflections is generated, and thickness data for the body or a body portion is calculated from the interference signal. In-situ monitoring of processes such as mechanical-chemical polishing, chemical vapor deposition, and plasma or reactive ion etching is achieved by providing a light passageway through a semiconductor body support such as a chuck or electrode, e.g., a cathode. In this manner, the process monitoring does not hinder, and is not hindered by, the processing steps and equipment.
摘要:
The present invention relates to a simple, low cost planarization technique whereby physical pressure is used to planarize the surface of a semiconductor device. The method of the present invention planarizes a semiconductor workpiece surface and results in an increase in the productivity of the processing steps that follow. In effect, the present invention applies physical pressure to flatten the surface layers of a semiconductor workpiece. The present invention is particularly adapted for use in planarizing surface layers made of plastic materials.
摘要:
An exposure mask having an excellent alignment accuracy between patterns, which is prepared by first forming on a light transmissive substrate a light shielding film or a semi-transparent film pattern (first pattern) somewhat larger than a desired dimension, forming thereon a semi-transparent film or a light transmissive film pattern (second pattern) so as to include all patterns of the desired dimensions made up of a light shielding part, a semi-transparent part and a light transmissive part, and then removing a projected part of the first pattern with use of the second pattern as a mask. The semi-transparent film is formed of at least two layers each of which contains a common element, thus the semi-transparent film can be made with use of the same apparatus and when patterning, etching process can be carried out with use of the same etchant. Further, since in a mask including the semi-transparent pattern, at least that area of a non-pattern zone where light reaches a wafer through the transfer, acts to shield the exposure light, too narrowed pattern or insufficient focal depth can be prevented.
摘要:
A plasma apparatus generates plasma by introducing electron beams into a processing chamber filled with a reactive gas for irradiation of the reactive gas with the introduced electron beams, to process a substance by the generated plasma. The plasma apparatus has a sample base for mounting the substance to be processed so that a processing surface of the substance is not directed in a direction perpendicular to a travel direction of the electron beams introduced into the processing chamber; a suppressing section for suppressing divergence of the electron beams introduced into the processing chamber; and a control section for controlling current density distribution of the divergence-suppressed electron beams so that current density distribution of ions contained in the plasma can be uniformalized on the substance to be processed.
摘要:
A semiconductor device of the present invention comprises a silicon substrate, a silicon oxide layer formed on the silicon substrate, first aluminum wires formed on the silicon oxide layer, a CVD SiO.sub.2 layer covering at least the first aluminum wires, and an inorganic oxide precipitated from a liquid-phase material, the inorganic oxide filling at least a gap between the first aluminum wires.
摘要:
In a magnetic field immersion type electron gun for controlling an electron beam emitted by an electron gun (51) with the use of an electric lens (56) and a magnetic field lens formed by permanent magnets (57, 58) of a coaxial ion pump (53), the ion pump magnets are a pair of cylindrical permanent magnets (57, 58) disposed coaxially with an optical axis (52) of the electron gun (51) in such a way as to sandwich a cylindrical ion pump anode (61) of the coaxial ion pump; the two permanent magnets are magnetized in a mutually opposing direction; a hollow cylindrical yoke (60) is disposed also coaxially with the optical axis (52) in such a way as to enclose the two permanent magnets (57, 58) within a hollow portion thereof; and the yoke (60) is formed with an annular yoke gap (63) in a radially inner circumferential surface of the yoke (60) to leak out a magnetic flux flowing through the yoke toward the optical axis. In the above-mentioned construction, the magnetic field lens can be formed efficiently with the use of the magnetic field generated by the permanent magnets for constituting the coaxial ion pump, and further the formed magnetic field lens can be superimposed upon the electron gun. Therefore, an electric field immersion type electron gun of high performance can be obtained, and further the electron gun chamber can be efficiently evacuated in the vicinity of the cathode tip of the electron gun.
摘要:
A probe is attached to a support plate vertically to the surface of the support plate. A drop of a molten metal is formed at a tip portion of the probe. The support plate has a heater for setting the temperature of the probe and the drop of the molten metal at the tip portion of the probe. The probe is situated at a position corresponding to a position of an electrode of an LSI. The probe is connected to a measuring device for evaluating characteristics of the LSI by wiring. The drop of the molten metal connects the probe and the electrode of the LSI electrically.
摘要:
The invention is directed to a method for detecting the chemical mechanical polishing rate of a surface of a semi-conductor wafer. In chemical mechanical polishing, a slurry made of abrasive particles suspended in a chemically abrasive liquid is dispensed on the surface of a rotating polishing pad. The wafer to be polished is rotated and lowered into contact with the rotating polishing pad. The method includes directing an X-ray beam at an exposed surface area of the polishing pad, and detecting the intensity of the X-ray fluorescence which results from the beam illuminating the pad. Since both the CMP rate of removal of a wafer surface and the intensity of the X-ray fluorescence are functions of the density of the abrasive particles in the slurry, the CMP rate of removal can be expressed as a function of the density. Accordingly, the detected intensity of the X-ray fluorescence can be converted directly into the CMP rate, without interfering with the CMP process.
摘要:
A plasma processing apparatus has a process chamber for receiving an article to be processed, a monitoring window forming part of the peripheral wall of the process chamber, a pressure leading-out port, gates, and a plasma generating device for forming an electric field and generating plasma in the process chamber. The process chamber is defined by the peripheral wall having a circular cross section. Members forming parts of the peripheral wall each have an inner face continuous with the surface of the peripheral wall and curved substantially at the same radius of curvature as the surface of the peripheral wall.