Abstract:
The present invention provides a method of manufacturing a probe having an extremely hard and acute tip, which involves the steps of precipitating a carbon film mixed with a columnar diamond crystal and an amorphous carbonic component at a tip of a probe material; and protruding the columnar diamond crystal by selectively etching the amorphous carbonic component. According to the present invention, it is possible to improve a resolving power of the analyzing device and probe durability as well.
Abstract:
A microminiature tip and tip assembly is fabricated using microelectronic fabrication techniques. A masking aperture is formed in a dielectric layer which overlies a (100) silicon substrate. For a square aperture, a pyramidal pit is anisotropically etched into the surface of the silicon substrate. Tungsten is selectively deposited in the pit to form a pyramid-shaped microminiature point. Continued deposition of tungsten fills the aperture to form a base portion of the tip which integrally locks the tip to the dielectric layer, which is fabricated to form a support member for the tip.
Abstract:
Ultrasharp diamond edges and points which are usable as cutting instruments and as high intensity point sources for the emission of electrons, ions, x-rays, coherent and incoherent light and high frequency electromagnetic radiation are produced by preparing and classifying ultrafine diamond powder having a particle size of 10 to 100 angstroms placing the powder in a diamond mold defining the ultrasharp edge or point to be produced and applying a pressure of the order of 80 to 90 kb while heating the powder to a temperature of the order of 2440.degree. to 2500.degree. K in an ultrahigh vacuum or inert atmosphere after degasing to avoid oxidation of the diamond powder.
Abstract:
A triple-point cathode coating and method wherein electrically conductive NEA diamond particles cast or mixed with the adhesive medium and electrically insulative NEA diamond particles are cast or mixed with the adhesive medium to form a plurality of exposed junctions between electrically conductive diamond particles and electrically insulative diamond particles to reduce any electrical charges on a structure coated with the coating.
Abstract:
A method of forming a field emitter comprises disposing a first layer on a substrate. The first layer is seeded with nanodiamond particles. The substrate with the first layer disposed thereon is maintained at a first temperature and a first pressure in a mixture of gases which includes nitrogen. The first layer is exposed to a microwave plasma to form a nitrogen doped ultrananocrystalline diamond film on the first layer, which has a percentage of nitrogen in the range of about 0.05 atom % to about 0.5 atom %. The field emitter has about 1012 to about 1014 emitting sites per cm2. A photocathode can also be formed similarly by forming a nitrogen doped ultrananocrystalline diamond film on a substrate similar to the field emitter, and then hydrogen terminating the film. The photocathode is responsive to near ultraviolet light as well as to visible light.
Abstract:
A source cold cathode field emission array (FEA) source based on ultra-nanocrystalline diamond (UNCD) field emitters. This system was constructed as an alternative for detection of obscured objects and material. Depending on the geometry of the given situation a flat-panel source can be used in tomography, radiography, or tomosynthesis. Furthermore, the unit can be used as a portable electron or X-ray scanner or an integral part of an existing detection system. UNCD field emitters show great field emission output and can be deposited over large areas as the case with carbon nanotube “forest” (CNT) cathodes. Furthermore, UNCDs have better mechanical and thermal properties as compared to CNT tips which further extend the lifetime of UNCD based FEA.
Abstract:
A source cold cathode field emission array (FEA) source based on ultra-nanocrystalline diamond (UNCD) field emitters. This system was constructed as an alternative for detection of obscured objects and material. Depending on the geometry of the given situation a flat-panel source can be used in tomography, radiography, or tomosynthesis. Furthermore, the unit can be used as a portable electron or X-ray scanner or an integral part of an existing detection system. UNCD field emitters show great field emission output and can be deposited over large areas as the case with carbon nanotube “forest” (CNT) cathodes. Furthermore, UNCDs have better mechanical and thermal properties as compared to CNT tips which further extend the lifetime of UNCD based FEA.
Abstract:
An electron source includes a back contact surface having a means for attaching a power source to the back contact surface. The electron source also includes a layer comprising platinum in direct contact with the back contact surface, a composite layer of single-walled carbon nanotubes embedded in platinum in direct contact with the layer comprising platinum. The electron source also includes a nanocrystalline diamond layer in direct contact with the composite layer. The nanocrystalline diamond layer is doped with boron. A portion of the back contact surface is removed to reveal the underlying platinum. The electron source is contained in an evacuable container.
Abstract:
An electron emission film having a pattern of diamond in X-ray diffraction and formed of a plurality of diamond fine grains having a grain diameter of 5 nm to 10 nm is formed on a substrate. The electron emission film can restrict the field intensity to a low level when it causes an emission current to flow, and has a uniform electron emission characteristic.
Abstract:
An object is to provide an electron emitting cathode achieving high luminance, low energy dispersion, and long life. It is therefore an object to provide a diamond electron emitting cathode graspable on a sufficiently stable basis, sharpened at the tip, and improved in electric field intensity. A diamond electron emitting cathode 110 according to the present invention is partitioned into at least three regions, i.e., a front end region 203 intended for electron emission at a tip of columnar shape, a rear end region 201 intended for grasping opposite in the longitudinal direction, and a thinned intermediate region 202, a cross-sectional area of the rear end region is not less than 0.2 mm2, the tip of the front end region is sharpened, and a maximum cross-sectional area of the thinned intermediate region is not more than 0.1 mm2.