Abstract:
The present invention relates to rear-projection film with “day/night” effect comprising at least two layers, where the film comprises at least one grey layer comprising at least one thermoplastic with transmittance of from 10% to 70% in the visible wavelength range and at least one layer comprising at least one thermoplastic and scattering particles, and also to the use of the said films as rear-projection areas in the vehicle interior sector.
Abstract:
The invention relates to a method for reducing the concentration of nitrogen oxides in waste gases released dating the production of organic amino compounds, wherein an organic compound is first reacted with NOx and/or nitric acid to form an organic nitro compound with the formation of an NOx-containing waste gas stream and the organic nitro compound is converted to the organic ammo compound by means of hydrogen-containing reaction gas, the reaction of the organic nitro compound with the hydrogen-containing reduction gas taking place with the formation of a hydrogen-containing waste gas stream, the method being characterised in that the NOx-containing waste gas stream is combined with the hydrogen-containing waste gas stream and/or an externally supplied hydrogen stream and is reacted at a temperature of 800 to 1700° C. for the at least partial reduction of the NOx concentration. The invention additionally relates to an apparatus for carrying out the method.
Abstract:
The present invention provides a process for working up alkaline waste water which is formed during washing of crude nitrobenzene obtained by nitration of benzene, wherein(i) the alkaline waste water is heated to a temperature of from 150° C. to 500° C. under an increased pressure with respect to atmospheric pressure with exclusion of oxygen;(ii) a base is added to the waste water obtained in (i); and(iii) the waste water obtained in (ii) is purified further by stripping with a stripping gas and the stripping gas strewn loaded with impurities is then cooled to a temperature of from 10° C. to 60° C.
Abstract:
The invention relates to an adiabatic process for producing nitrobenzene by nitrating benzene with sulphuric acid mixtures and nitric acid mixtures using a stoichiometric excess of benzene and reusing non-reacted benzene, the content of the aliphatic organic compounds in the feed benzene being limited, by the targeted evacuation of aliphatic organic compounds to at least one step in the process, to a content of less than 1.5 mass-%, in relation to the total amount of feed benzene.
Abstract:
Disclosed are polyaspartic esters obtainable by reaction of at least one polyamine component A), comprising an amine compound of the formula (I), where X is a saturated or unsaturated, linear or branched, aliphatic or cycloaliphatic or aromatic organic radical which is substituted or unsubstituted and/or has heteroatoms in the chain, Y is a secondary amino group bonded to two carbon atoms, R1 and R2 independently of one another are saturated or unsaturated, linear or branched, aliphatic or cycloaliphatic or aromatic organic radicals having 1 to 18 carbon atoms, and are substituted or unsubstituted and/or have heteroatoms in the chain, and n is a natural number from 1 to 4, with at least one polyisocyanate component B), comprising a polyisocyanate which contains at least one chemically bonded, non-ionic, hydrophilic group, characterized in that the ratio of the number of secondary amino groups Y to the number of isocyanate groups in the polyisocyanate is from 250:1 to 3:1. Further disclosed is a method for producing a coating composition, a 2-component system, the use thereof for producing a coating on a substrate, and the substrates coated accordingly.
Abstract:
Disclosed is a multi-layer body with high weathering resistance comprising (a) a substrate layer containing at least one thermoplastic polymer (b) one cover layer on at least one side of the substrate layer, characterised in that the substrate layer further contains: (a1) at 0.02 wt. % to 0.2 wt %, at least one colorant on the basis of anthraquinone of structure (1) or (2) with structure (1), R1 and R2 standing, independently of each other, for H, OH, OR5 NH2 and NHR5, R5 being selected from alkyl, cycloalkyl, phenyl and substituted and annulated phenyls, and R3 standing for H, alkyl, alkoxy, and R4 standing for H, OH and p-methylphenyl-NH—; and with structure (2): (a2) at 0.01 wt % to 1.00 wt. %, one or a plurality of demoulders, and the cover layer consisting of a coating on the basis of polysiloxane or on the basis of polyacrylate or on the basis of polyurethane acrylate, containing at least one UV-absorber and having a layer thickness of 2-15 m.
Abstract:
The invention provides a continuous adiabatic process for the preparation of nitrobenzene by nitrating benzene with mixtures of sulfuric and nitric acids using a stoichiometric excess of benzene, wherein the content of organic compounds in the circulating sulfuric acid, at least during the start-up period of the production plant, is always kept below 1.0 mass percent, based on the total mass of circulating sulfuric acid. This is preferably achieved by a procedure in which, either after the end or before the beginning of a production cycle, the circulating sulfuric acid is circulated at elevated temperature so that the organics contained in the sulfuric acid, preferably comprising nitrobenzene and traces of benzene, dinitrobenzene and nitrophenols, are separated off in the evaporation apparatus for concentrating the sulfuric acid.
Abstract:
A composite and process for the production of a composite component, comprising a) a support of a thermoplastic composition, and b) at least one polyurethane layer in direct contact with the support.
Abstract:
The present invention relates to a UV absorber-comprising urethane acrylate, to a process for its preparation, and to the use thereof. The UV absorber is chemically bonded into the system. The UV absorber-comprising urethane acrylate has the formula (I):
Abstract:
The present invention relates to a process for separating an isocyanate prepared by reaction of a primary amine with an excess of phosgene in the gas phase from the gaseous crude product obtained in the reaction, wherein (i) the gaseous crude product is partially liquefied by contacting with a quenching liquid, (ii) the gas phase obtained in step (i) is partially condensed, (iii) the condensate obtained in step (ii) is used as the quenching liquid in step (i), (iv) the portions of the gas phase that were not condensed in step (ii) are at least partially liquefied, (v) the liquid phase obtained in step (iv) is likewise used as the quenching liquid in step (i), and (vi) the liquid phase obtained in step (i) is worked up to the pure isocyanate without previously being used as quenching liquid.