摘要:
Disclosed is a method of forming memory devices employing halogen ion implantation and diffusion processes. In one illustrative embodiment, the method includes forming a plurality of word line structures above a semiconducting substrate, each of the word line structures comprising a gate insulation layer, performing an LDD ion implantation process to form LDD doped regions in the substrate between the word line structures, performing a halogen ion implantation process to implant atoms of halogen into the semiconducting substrate between the word line structures, and performing at least one anneal process to cause at least some of the atoms of halogen to diffuse into the gate insulation layers on adjacent word line structures.
摘要:
Disclosed is a method of forming memory devices employing halogen ion implantation and diffusion processes. In one illustrative embodiment, the method includes forming a plurality of word line structures above a semiconducting substrate, each of the word line structures comprising a gate insulation layer, performing an LDD ion implantation process to form LDD doped regions in the substrate between the word line structures, performing a halogen ion implantation process to implant atoms of halogen into the semiconducting substrate between the word line structures, and performing at least one anneal process to cause at least some of the atoms of halogen to diffuse into the gate insulation layers on adjacent word line structures.
摘要:
A structure and method are provided to inhibit degradation to the electron beam of a field emitter device by coating the field emitter tip with a substance or a compound. The substance or compound acts in the presence of outgassing to inhibit such degradation. In one embodiment, the substance or compound coating the field emitter tip is stable in the presence of outgassing. In another embodiment, the substance or compound decomposes at least one matter in the outgassing. In yet another embodiment, the substance or compound neutralizes at least one matter in the outgassing. In a further embodiment, the substance or compound brings about a catalysis in the presence of outgassing.
摘要:
Disclosed is a method of forming memory devices employing halogen ion implantation and diffusion processes. In one illustrative embodiment, the method includes forming a plurality of word line structures above a semiconducting substrate, each of the word line structures comprising a gate insulation layer, performing an LDD ion implantation process to form LDD doped regions in the substrate between the word line structures, performing a halogen ion implantation process to implant atoms of halogen into the semiconducting substrate between the word line structures, and performing at least one anneal process to cause at least some of the atoms of halogen to diffuse into the gate insulation layers on adjacent word line structures.
摘要:
Disclosed is a method of forming memory devices employing halogen ion implantation and diffusion processes. In one illustrative embodiment, the method includes forming a plurality of word line structures above a semiconducting substrate, each of the word line structures comprising a gate insulation layer, performing an LDD ion implantation process to form LDD doped regions in the substrate between the word line structures, performing a halogen ion implantation process to implant atoms of halogen into the semiconducting substrate between the word line structures, and performing at least one anneal process to cause at least some of the atoms of halogen to diffuse into the gate insulation layers on adjacent word line structures.
摘要:
According to one aspect of the invention, a field emission display is provided comprising: an anode; a phosphor screen located on the anode; a cathode; an evacuated space between the anode and the cathode; an emitter located on the cathode opposite the phosphor; wherein the emitter comprises an electropositive element both in a body of the emitter and on a surface of the emitter. According to another aspect of the invention, a process for manufacturing a FED is provided comprising the steps of forming an emitter comprising an electropositive element in the body of the tip; positioning the emitter in opposing relation to a phosphor display screen; creating an evacuated space between the emitter tip and the phosphor display screen; and causing the electropositive element to migrate to an emission surface of the emitter.
摘要:
A plurality of memory cell stacks are formed over a substrate. The substrate does not have diffusion regions between each memory cell stack to link the memory cells. The cells are formed close enough such that the memory cells are linked serially by the electric fields generated by each floating gate in the channel regions. In one embodiment, an n-layer is implanted at the top of the substrate to increase conductivity between cells. The select transistors can be linked to the serial string by diffusion regions or by interaction of the electric fields between the select transistor channel and the memory cell channel.
摘要:
According to one aspect of the invention, a field emission display is provided comprising: an anode; a phosphor screen located on the anode; a cathode; an evacuated space between the anode and the cathode; an emitter located on the cathode opposite the phosphor; wherein the emitter comprises an electropositive element both in a body of the emitter and on a surface of the emitter. According to another aspect of the invention a process for manufacturing an FED is provided comprising the steps of: forming an emitter comprising an electropositive element in the body of the tip; positioning the emitter in opposing relation to a phosphor display screen; creating an evacuated space between the emitter tip and the phosphor display screen; and causing the electropositive element to migrate to the an emission surface of the emitter.
摘要:
Improved field emission display includes a buffer layer of copper, aluminum, silicon nitride or doped or undoped amorphous, poly, or microcrystalline silicon located between a chromium gate electrode and associated dielectric layer in a cathode assembly. The buffer layer substantially reduces or eliminates the occurrence of an adverse chemical reaction between the chromium gate electrode and dielectric layer.
摘要:
An emitter substructure and methods for manufacturing the substructure are described. A substrate has a p-region formed at a surface of the substrate. A n-tank is formed such that the p-region surrounds a periphery of the n-tank. An emitter is formed on and electrically coupled to the n-tank. A dielectric layer is formed on the substrate that includes an opening surrounding the emitter. An extraction grid is formed on the dielectric layer. The extraction grid includes an opening surrounding and in close proximity to a tip of the emitter. An insulating region is formed at a lower boundary of the n-tank. The insulating region electrically isolates the emitter and the n-tank along at least a portion of the lower boundary beneath the opening. The insulating region thus functions to displace a depletion region associated with a boundary between the p-region and the n-tank from an area that can be illuminated by photons traveling through the extraction grid or openings in the extraction grid. This reduces distortion in field emission displays.