Abstract:
Techniques for producing a glass structure having interconnected macroscopic pores, including providing a polymeric structure having interconnected macroscopic pores; providing polymerizable glass precursors; filling pores in the polymeric structure with the polymerizable glass precursors; polymerizing the polymerizable glass precursors to yield a filled polymeric structure; and decomposing the filled polymeric structure to produce a glass structure having interconnected macroscopic pores. Techniques for filling pores of such glass structure with a material having a high refractive index, and for then removing the glass structure. Structures can be produced having interconnected macroscopic pores and high refractive index contrasts, which can be used, for example, as photonic band gaps.
Abstract:
A process for forming a polymer template includes exposing a photoresist having polymer molecules to a light pattern and baking the photoresist to chemically react polymer molecules in portions of the photoresist that were exposed to light of the light pattern. The reacted polymer molecules have a different solubility in a solvent than chemically unreacted polymer molecules. The process also includes washing the baked photoresist with the solvent to produce a porous structure by selectively solvating one of the reacted polymer molecules and the unreacted polymer molecules. The porous structure can be used as template for forming porous structures of high refractive index materials.
Abstract:
A process for device fabrication and resist materials that are used in the process are disclosed. The resist material contains a polymer in combination with a dissolution inhibitor and a photoacid generator (PAG). The dissolution inhibitor is the condensation reaction product of a saturated polycyclic hydrocarbon compound with at least one hydroxy (OH) substituent and a difunctional saturated linear, branched, or cyclic hydrocarbon compound wherein the functional groups are either carboxylic acid or carboxylic acid chloride groups. The condensation product has at least two polycylic moieties. The polymer optionally has acid labile groups pendant thereto which significantly decrease the solubility of the polymer in a solution of aqueous base. A film of the resist material is formed on a substrate and exposed to delineating radiation. The radiation induces a chemical change in the resist material rendering the exposed resist material substantially more soluble in aqueous base solution than the unexposed portion of the resist material. The image introduced into the resist material is developed using conventional techniques, and the resulting pattern is then transferred into the underlying substrate.
Abstract:
A class of resist compositions sensitive to deep ultraviolet radiation includes a resin sensitive to acid and a composition that generates acid upon exposure to such radiation. A group of nitrobenzyl materials is particularly suitable for use as the acid generator.
Abstract:
Sensitive deep ultraviolet resists are formed utilizing a material that undergoes decomposition to form an acid together with a polymer including a chain scission inducing monomer such as sulfonyl units and substituent that undergoes reaction to form an acidic moiety when subjected to the photogenerated species. An exemplary composition includes poly(t-butoxycarbonyloxystyrenesulfone) and 2,6-dinitrobenzyl-p-toluene sulfonate. The sulfonate decomposes to form sulfonic acid upon irradiation. This acid reacts with the polymer group to form an acid functionality while the sulfone moiety of the polymer induces scission. As a result, the irradiated portions of the resist material are soluble in ionic solvents while the unirradiated portions are not.
Abstract:
Excellent resolution in the lithographic fabrication of electronic devices is achieved with a specific bilevel resist. This bilevel resist includes an underlying layer formed with a conventional material such as a novolac resin baked at 200.degree. C. for 30 minutes and an overlying layer including a silicon containing material such as a silicon derivative of poly(methyl methacrylate). This bilevel resist has the attributes of a trilevel resist and requires significantly less processing.
Abstract:
A solid semiconductor composition includes a solid matrix of organic semiconductor molecules and a dispersion of nanorods or nanotubes in the matrix. The nanorods or nanotubes do not form a percolating structure that spans the composition.
Abstract:
The present invention is directed to a process for device fabrication and resist materials that are used in the process. The resist material contains a polymer that is the polymerization product of a monomer that contains alicyclic moieties and at least one other monomer. The polymer is formed by free radical polymerization, and the resulting polymer either has alicyclic moieties incorporated into the polymer backbone or pendant to the polymer backbone via saturated hydrocarbon linkages. Other monomers are selected for polymerization with the alicyclic moiety-containing monomer on the basis of the ability of the monomer to copolymerize by free radical polymerization. Although the polymers are contemplated as useful in resist materials that are sensitive to radiation in the ultraviolet, and x-ray wavelengths as well as sensitive to electron beam radiation, the polymers are particularly advantageous for use in process in which the exposing radiation is 193 nm, because the amount of ethylenic unsaturation in these resist materials is low.
Abstract:
A lithographic process for fabricating a device is disclosed. An area of radiation sensitive material is formed on a substrate. The radiation sensitive material contains a polymeric component The polymeric component is the copolymerization product of a maleimide monomer and at least two other monomers. Acid labile groups are pendant to one of the monomers with which the maleimide monomer is copolymerized. The acid labile groups are pendant to less than 50 mole percent of the monomers that make up the copolymer. The acid labile groups are not pendant to the maleimide monomer. The radiation sensitive material is patternwise exposed to radiation after it is formed on the substrate. The patternwise exposure transfers an image into the radiation sensitive material. The image is developed into a pattern in the radiation sensitive material. The pattern is then transferred into the substrate.
Abstract:
A class of resist compositions sensitive to deep ultraviolet radiation includes a resin sensitive to acid and a composition that generates acid upon exposure to such radiation. A group of nitrobenzyl materials is particularly suitable for use as the acid generator.