Abstract:
Offering vertical services to subscribers and service providers is an avenue to immediately improve the competitiveness of digital subscriber line access service, for example of the type offered by a local exchange carrier. To deliver high-quality vertical services, however, the underlying ADSL Data Network (ADN) or the like needs to establish Quality of Service (QoS) as a core characteristic and offer an efficient mechanism for insertion of the vertical services. The inventive network architecture introduces QoS into the ADN, in a manner that enables the delivery of sophisticated and demanding IP-based services to subscribers, does not affect existing Internet tiers of service, and is cost-effective in terms of initial costs, build-out, and ongoing operations. The architecture utilizes a switch capable of examining and selectively forwarding packets or frames based on higher layer information in the protocol stack, that is to say on information that is encapsulated in the layer-2 information utilized to define normal connectivity through the network. The switch enables segregation of upstream traffic by type and downstream aggregation of Internet traffic together with traffic from a local services domain for vertical services and other local services. Systems coupled to the local services domain alone or in combination with software in servers and/or a user's computer enable a testing of connectivity, throughput, QoS metrics and the like through selected points of the ADN network.
Abstract:
Offering vertical services to subscribers and service providers is an avenue to immediately improve the competitiveness of digital subscriber line access service, for example of the type offered by a local exchange carrier. To deliver high-quality vertical services, however, the underlying ADSL Data Network (ADN) or the like needs to establish Quality of Service (QoS) as a core characteristic and offer an efficient mechanism for insertion of the vertical services. The inventive network architecture introduces QoS into the ADN, in a manner that enables the delivery of sophisticated and demanding IP-based services to subscribers, does not affect existing Internet tiers of service, and is cost-effective in terms of initial costs, build-out, and ongoing operations. The architecture utilizes a switch capable of examining and selectively forwarding packets or frames based on higher layer information in the protocol stack, that is to say on information that is encapsulated in the layer-2 information utilized to define normal connectivity through the network. The switch enables segregation of upstream traffic by type and downstream aggregation of Internet traffic together with traffic from a local services domain for vertical services and other local services. Systems coupled to the local services domain alone or in combination with software in servers and/or a user's computer enable a testing of connectivity, throughput, QoS metrics and the like through selected points of the ADN network.
Abstract:
Simple peering is provided in a novel network in which transport technology is independent of network access technology. An out-of-band network may be used to carry advertisements to an update facility. The update facility may use layer 3 destination address information and at least a part of context information (to identify customers uniquely) to determine a layer 3 address of an edge device of the transport network associated with an addressed customer device. Virtual private networks are supported, as context information is used to distinguish different customers with overlapping layer 3 addresses.
Abstract:
Supporting virtual private networks by using a new layer 3 address to encapsulate a network-bound packet so that its context information, from which a layer 2 (e.g., MAC) address can be derived, is preserved. If this encapsulation was not done, the layer 2 address would change over each segment of the network. Thus, the encapsulation preserves the concept of group identification, using at least a part of the context, over the entire network and not just at the edge of the network. If a packet is received from the network (to be forwarded to a customer), the layer 3 address that was added in the encapsulation is stripped off. The original layer 3 destination address may be used with a client device addressing table to determine a new context information, and a layer 2 (e.g., MAC) address of a destination client device. If the client device addressing table does not include entries corresponding to the layer 3 destination address, an address resolution protocol (or “ARP”) may be broadcast to request such information or contents of inbound packets may be observed (snooping). The packet may then be forwarded to an aggregation device.
Abstract:
Aggregating physical connections from customers for presentation to an access router and de-aggregating traffic from a shared link(s) from the access router. Ports of an aggregation unit may be configured such that each has a unique identifier in the place of information (e.g., the layer 2 address) originally in the layer 2 header. The layer 2 (e.g., MAC) address of the customer device connected with the port can be associated with, and therefore determined from, the IP address of the attached device. When a packet is received from a customer, information in the layer 2 header is changed to a unique identifier assigned to a logical port or interface associated with the physical port. When a packet is received from the access router, it is placed on the port assigned to the logical port associated with the destination layer 2 address (or associated with other bits of the unique bit string and at least some of those bits are replaced with the destination layer 2 address of the device associated with the port.
Abstract:
A communication system providing telephony communication across combined circuit switched and packet switched networks, such as a telephone network and the Internet, which are connectable to terminals, such as telephones and computers, for selective communication therebetween. The communication system provides an architecture and methodology for implementing initiation of establishment of a communication path between called and called terminals from a telephone terminal. The architecture and methodology facilitates communication across carriers or service providers, settlements between carriers and service providers, usage accounting across carriers and service providers, and usage allocation among carriers or service providers. Upon a terminal requesting connection to a gateway to establish a communication path between that terminal and a designated destination terminal, there occurs within the circuit switched network and a gateway to the packet network a transfer of an information package which identifies the calling station, the called station, and the identity of the responsible origination carrier or service provider. An authentication database of this carrier is accessed and authorization of the requested communication is secured. The second carrier or service provider is requested to complete the communication path. The second carrier or service provider consults a database of carriers or service providers, determines whether to authorize the communication, and upon arriving at an affirmative conclusion establishes the communication path, completes the communication, and compiles a charge to the first service provider and a statement of usage and presents the same to the first service provider.
Abstract:
A communication system providing telephony communication across combined circuit switched and packet switched networks, such as a telephone network and the Internet, which are connectable to terminals, such as telephones and computers, for selective communication therebetween. The communication system provides an architecture and methodology for implementing initiation of establishment of a communication path between called and called terminals from a telephone terminal. The architecture and methodology facilitates communication across carriers or service providers, settlements between carriers and service providers, usage accounting across carriers and service providers, and usage allocation among carriers or service providers. Upon a terminal requesting connection to a gateway to establish a communication path between that terminal and a designated destination terminal, there occurs within the circuit switched network and a gateway to the packet network a transfer of an information package which identifies the calling station, the called station, and the identity of the responsible origination carrier or service provider. An authentication database of this carrier is accessed and authorization of the requested communication is secured. The second carrier or service provider is requested to complete the communication path. The second carrier or service provider consults a database of carriers or service providers, determines whether to authorize the communication, and upon arriving at an affirmative conclusion establishes the communication path, completes the communication, and compiles a charge to the first service provider and a statement of usage and presents the same to the first service provider.
Abstract:
A system and method using enhanced processing, responsive to domain name translation requests, to provide selective routing services through a public packet switched data network. The name processing applies to translation of a domain name into a group of Internet Protocol (IP) addresses and to providing routing information for a packet data network such as the Internet. Following name translation into a group of addresses communication is automatically established between a calling terminal and a terminal designated by one of the addresses and determined through processing which effects linkage with the first terminal to respond. The selective routing is particularly advantageous for processing of voice telephone communications through the Internet packet data network based on domain name translations. One or more domain names can be translated into a group of addresses which may include a mixture of Internet (IP) addresses and telephone number addresses, along with routing procedures with respect to the addresses. The system is designed to provide called party locator services offering a variety of options to the customer for the procedures to be followed. An important feature is a convenient and efficient provisioning method using an advanced intelligent network provided with one or more intelligent peripheral platforms.
Abstract:
An advanced intelligent network (AIN) comprises a services control point providing fully integrated service logic for both narrowband and broadband communications. When a terminating trigger of a switch on the phone number of the line serving a customer detects an incoming telephone call, the switch sends a query to the services control point with the calling number of the incoming call. The services control point issues a send data transaction with the retrieved calling party information to the customer's set-top box. The calling party information is then displayed on the customer's video display, and the customer sends an instruction for re-directing the call through the set-top box to the ISCP.
Abstract:
An Advanced Intelligent Network is disclosed which permits even "disconnected" subscriber equipment to complete calls to the business office of the network operator or to 911 by providing soft dial tone to such users for access to only a limited sub-set of network capabilities. In addition, methods and apparatus are disclosed for coordinating the retrieval and presentation of data related to a particular subscriber's call to a Business Office Representative.