Abstract:
This invention is generally concerned with power semiconductors such as power MOS transistors, insulated gate by bipolar transistors (IGBTs), high voltage diodes and the like, and method for their fabrication. A power semiconductor, the semiconductor comprising a power device, said power device having first and second electrical contact regions and a drift region extending therebetween; and a semiconductor substrate mounting said device; and wherein said power semiconductor includes an electrically insulating layer between said semiconductor substrate and said power device, said electrically insulating layer having a thickness of at least 5 μm.
Abstract:
A silicon carbide semiconductor device includes a substrate and a junction field effect transistor. The transistor includes: a first semiconductor layer disposed on the substrate; a first gate layer disposed on a surface of the first semiconductor layer; a first channel layer adjacent to the first gate layer on the substrate; a first source layer connecting to the first channel layer electrically; a second gate layer adjacent to the first channel layer to sandwich the first channel layer; a second channel layer adjacent to the second gate layer to sandwich the second gate layer; a third gate layer adjacent to the second channel layer to sandwich the second channel layer; and a second source layer connecting to the second channel layer electrically.
Abstract:
A power semiconductor device has an active region that includes a drift region. At least a portion of the drift region is provided in a membrane which has opposed top and bottom surfaces. In one embodiment, the top surface of the membrane has electrical terminals connected directly or indirectly thereto to allow a voltage to be applied laterally across the drift region. In another embodiment, at least one electrical terminal is connected directly or indirectly to the top surface and at least one electrical terminal is connected directly or indirectly to the bottom surface to allow a voltage to be applied vertically across the drift region. In each of these embodiments, the bottom surface of the membrane does not have a semiconductor substrate positioned adjacent thereto.
Abstract:
A silicon carbide semiconductor device includes a substrate and a junction field effect transistor. The transistor includes: a first semiconductor layer disposed on the substrate; a first gate layer disposed on a surface of the first semiconductor layer; a first channel layer adjacent to the first gate layer on the substrate; a first source layer connecting to the first channel layer electrically; a second gate layer adjacent to the first channel layer to sandwich the first channel layer; a second channel layer adjacent to the second gate layer to sandwich the second gate layer; a third gate layer adjacent to the second channel layer to sandwich the second channel layer; and a second source layer connecting to the second channel layer electrically.
Abstract:
A gas-sensing semiconductor device is fabricated on a silicon substrate having a thin silicon oxide insulating layer in which a resistive heater made of a CMOS compatible high temperature metal is embedded. The high temperature metal is tungsten. The device includes at least one sensing area provided with a gas-sensitive layer separated from the heater by an insulating layer. As one of the final fabrication steps, the substrate is back-etched so as to form a thin membrane in the sensing area. Except for the back-etch and the gas-sensitive layer formation, that are carried out post-CMOS, all other layers, including the tungsten resistive heater, are made using a CMOS process employing tungsten metallisation. The device can be monolithically integrated with the drive, control and transducing circuitry using low cost CMOS processing. The heater, the insulating layer and other layers are made within the CMOS sequence and they do not require extra masks or processing.
Abstract:
A lateral semiconductor device (10) has a semiconductor layer (15) on an insulating substrate (16). The semiconductor layer (15) has a first region (12) of a first conduction type and a second region (13) of a second conduction type with a drift region (14) therebetween. The drift region (14) is provided by a third region (14″) of the first conduction type and a fourth region (14′) of the second conduction type. The third and fourth (drift) regions (14″,14′) are so arranged that when a reverse voltage bias is applied across the first and second regions (12,13) of the semiconductor layer (15), the third region (14″) has locally in the proximity of the first region (12) an excess of impurity charge relative to the fourth region (14′), and the fourth region (14′) has locally in the proximity of the second region (13) an excess of impurity charge relative to the third region (14″), and the total volume charge in the third region (14″) is substantially equal to the total volume charge in the fourth region (14′).
Abstract:
A termination structure for a power transistor includes a semiconductor substrate having an active region and a termination region. The substrate has a first type of conductivity. A termination trench is located in the termination region and extends from a boundary of the active region to within a certain distance of an edge of the semiconductor substrate. A doped region has a second type of conductivity disposed in the substrate below the termination trench. A MOS gate is formed on a sidewall adjacent the boundary. The doped region extends from below a portion of the MOS gate spaced apart from the boundary toward a remote sidewall of the termination trench. A termination structure oxide layer is formed on the termination trench and covers a portion of the MOS gate and extends toward the edge of the substrate. A first conductive layer is formed on a backside surface of the semiconductor substrate. A second conductive layer is formed atop the active region, an exposed portion of the MOS gate, and extends to cover at least a portion of the termination structure oxide layer.
Abstract:
An IR source in the form of a micro-hotplate device including a CMOS metal layer made of at least one layer of embedded on a dielectric membrane supported by a silicon substrate. The device is formed in a CMOS process followed by a back etching step. The IR source also can be in the form of an array of small membranes —closely packed as a result of the use of the deep reactive ion etching technique and having better mechanical stability due to the small size of each membrane while maintaining the same total IR emission level. SOI technology can be used to allow high ambient temperature and allow the integration of a temperature sensor, preferably in the form of a diode or a bipolar transistor right below the IR source.
Abstract:
In a reverse conducting semiconductor device, which forms a composition circuit, a positive voltage that is higher than a positive voltage of a collector electrode may be applied to an emitter electrode. In this case, in a region of the reverse conducting semiconductor device in which a return diode is formed, a body contact region functions as an anode, a drift contact region functions as a cathode, and current flows from the anode to the cathode. When a voltage having a lower electric potential than the collector electrode is applied to the trench gate electrode at that time, p-type carriers are generated within the cathode and a quantity of carriers increases within the return diode. As a result, a forward voltage drop of the return diode lowers, and constant loss of electric power can be reduced. Electric power loss can be reduced in a power supply device that uses such a composition circuit in which a switching element and the return diode are connected in reverse parallel.
Abstract:
The present invention relates to a semiconductor power device and power integrated circuits (ICs). The lateral SOI MOSFET in the present comprises a trench gate extended to the dielectric buried layer, one or multiple dielectric trenches in the drift region, and a buried gate in said dielectric trench. The permittivity of the dielectric in said dielectric trench is lower than that of said active layer. Firstly, said dielectric trench not only greatly improves breakdown voltage, but also reduces pitch size. Secondly, the trench gate widens the effective conductive region in the vertical direction. Thirdly, dual gates of said trench gate and buried gate increase channel and current densities. Thereby, specific on-resistance and the power loss are reduced. The device of the present invention has many advantages, such as high voltage, high speed, low power loss, low cost and ease of integration. The device in the present invention is particularly suitable for power integrated circuits and RF power integrated circuits.