Abstract:
Provided is a quantum dot-metal oxide complex including a quantum dot and a metal oxide forming a 3-dimensional network with the quantum dot. In the quantum dot-metal oxide complex, the quantum dot is optically stable without a change in emission wavelength band and its light-emitting performance is enhanced.
Abstract:
A method for manufacturing a printed circuit board with a capacitor embedded therein which has a dielectric film using laser lift off, and a capacitor manufactured thereby. In the method, a dielectric film is formed on a transparent substrate and heat-treated. A first conductive layer is formed on the heat-treated dielectric film. A laser beam is irradiated onto a stack formed, from below the transparent substrate, to separate the transparent substrate from the stack. After the transparent substrate is separated from the stack, a second conductive layer is formed with a predetermined pattern on the dielectric film. Also, an insulating layer and a third conductive layer are formed on the first and second conductive layers to alternate with each other in a predetermined number.
Abstract:
There is provided a quantum dot wavelength converter including a quantum dot, which is optically stable without any change in an emission wavelength and improved in emission capability. The quantum dot wavelength converter includes: a wavelength converting part including a quantum dot wavelength-converting excitation light and generating a wavelength-converted light and a dispersive medium dispersing the quantum dot; and a sealer sealing the wavelength converting part.
Abstract:
The present invention relates to a method for manufacturing quantum dots including mixing a Group II metal precursor and a natural oil and increasing temperature thereof and adding a Group VI chalcogenide precursor to the mixed solution and increasing temperature thereof. According to the present invention, use of a natural oil, instead of any artificially synthesized surfactant, allows mass production of eco-friendly quantum dots.
Abstract:
A method of manufacturing a circuit board embedding a thin film capacitor, the method including: forming a sacrificial layer on a first substrate; forming a dielectric layer on the sacrificial layer; forming a first electrode layer on the dielectric layer; disposing the first substrate on the second substrate in such a way that the first electrode layer is bonded to a top of a second substrate; decomposing the sacrificial layer by irradiating a laser beam onto the sacrificial layer through the first substrate; separating the first substrate from the second substrate; and forming a second electrode layer on the dielectric layer.
Abstract:
Provided is a quantum dot-metal oxide complex including a quantum dot and a metal oxide forming a 3-dimensional network with the quantum dot. In the quantum dot-metal oxide complex, the quantum dot is optically stable without a change in emission wavelength band and its light-emitting performance is enhanced.
Abstract:
There is provided a quantum dot wavelength converter including a quantum dot, which is optically stable without any change in an emission wavelength and improved in emission capability. The quantum dot wavelength converter includes: a wavelength converting part including a quantum dot wavelength-converting excitation light and generating a wavelength-converted light and a dispersive medium dispersing the quantum dot; and a sealer sealing the wavelength converting part.
Abstract:
Disclosed are an embedded capacitor and a printed circuit board including the same that can minimize the oxidization of a metal layer. A thin-film capacitor can include a first metal electrode film; a barrier layer, formed on the first metal electrode film to include a conductive oxide; a dielectric film, formed on the barrier layer; and a second metal electrode film, formed on the dielectric film. With the present invention, the outstanding characteristic of a ferroelectric thin film can be provided by minimizing the oxidization of a copper film in the heat treatment after forming the ferroelectric thin film on the copper film.
Abstract:
Disclosed herein is a structure of an FPC integrated touch panel. According to preferred embodiments of the present invention, a transparent substrate configured of a flexible transparent film is provided and an extension part protruded to the transparent substrate is integrally formed with the transparent substrate, such that a separate FPC needs not to be manufactured, thereby saving process time and manufacturing costs. In addition, the exemplary embodiments of the present invention bend an inactive area unnecessarily occupying an area of the transparent substrate to a side of the touch panel, thereby implementing a touch panel widening a substantial area of an active region.
Abstract:
Disclosed herein is a touch panel including a base member; a transparent electrode formed on the base member and made of metal; and gloss reduction layers formed on the transparent electrode. The gloss reduction layers tinged with a dark color are formed on the transparent electrode made of metal to block metallic gloss, thereby making it possible to prevent the transparent electrode from being viewed and reduce reflectivity on the surface of the transparent electrode. In addition, the transparent electrode made of metal is patterned in a mesh shape, thereby making it possible to enhance light transmitivity of the touch panel.