摘要:
The invention provides method of fabricating a scaffold comprising a fluidic network, including the steps of: (a) generating an initial vascular layer for enclosing the chamber and providing fluid to the cells, the initial vascular layer having a network of channels for fluid; (b) translating the initial vascular layer into a model for fluid dynamics analysis; (c) analyzing the initial vascular layer based on desired parameters selected from the group consisting of a characteristic of a specific fluid, an input pressure, an output pressure, an overall flow rate and combinations thereof to determine sheer stress and velocity within the network of channels; (d) measuring the sheer stress and the velocity and comparing the obtained values to predetermined values; (e) determining if either of the shear stress or the velocity are greater than or less than the predetermined values, and (f) optionally modifying the initial vascular layer and repeating steps (b)-(e). The invention also provides compositions comprising a vascular layer for use in tissue lamina as well as a medical devices having a vascular layer and kits.
摘要:
A microfluidic device is provided. The microfluidic device includes a first transparent, solid support layer. A first polymeric layer defining at least one chamber is attached to the first transparent, solid support layer. A semi-permeable membrane is attached to the first polymeric layer. A second polymeric layer is attached to the opposite side of the semi-permeable membrane from the first polymeric layer. The second polymeric layer has a thickness of less than 300 microns and defines at least one chamber positioned to overlap with at least one chamber in the first polymeric layer. A first manifold structure is attached to an input end of at least one chamber and a second manifold structure is attached to an output end of at least one chamber.
摘要:
The present invention provides an in vitro blood vessel model for investigation of drug induced vascular injury and other vascular pathologies. The in vitro blood vessel model provides two channels separated by a porous membrane that is coated on one side by an endothelial cell layer and is coated on the other side by a smooth muscle cell layer, wherein said model is susceptible to the extravasation of red blood cells across said porous membrane due to drug induced vascular injury.
摘要:
The present invention relates to tissue engineered compositions and methods comprising nanotopographic surface topography (“nanotopography”) for use in modulating the organization and/or function of multiple cell types.
摘要:
The present invention relates to tissue engineered compositions and methods comprising nanotopographic surface topography (“nanotopography”) for use in modulating the organization and/or function of multiple cell types.
摘要:
The present invention relates to a three-dimensional system, and compositions obtained therefrom, wherein individual layers of the system comprise channels divided longitudinally into two compartments by a centrally positioned membrane, and wherein each compartment can comprise a different cell type.
摘要:
In one embodiment, a high-throughput flow system includes an array of wells and a separate mechanical tip positioned within each well. Each mechanical tip is separately actuated to impart a shear stress pattern.