Abstract:
Disclosed herein is an inertial sensor. There is provided an inertial sensor 100, including: a plate-like substrate layer 110, a mass body 130, a post 140, a support part 150 extending in the central direction of the mass body 130 from the post 140, and a detection unit 170 detecting the displacement of the displacement part 113. The inertial sensor adopts the support part 150 limiting the downward displacement of the mass body 130 to prevent the support portion of the mass body 130 from being damaged.
Abstract:
An actively tunable waveguide-based iris filter having a first part including a first portion of a deformable iris filter cavity having an inlet and an outlet; a second part operatively coupled with the first part and including a second portion of the deformable iris filter cavity having a deformable membrane operatively coupled with the first portion of a deformable iris filter cavity; the first portion and the second portion together forming the deformable iris filter cavity of the tunable waveguide-based iris filter; and means for moving the deformable membrane, whereby movement of the deformable membrane changes the geometry of the deformable iris filter cavity for causing a change in the frequency of a signal being filtered by the filter. The tunable filter is fabricated using a MEMS-based process including a plastic micro embossing process and a gold electroplating process. Prototype filters were fabricated and measured with bandwidth of 4.05 GHz centered at 94.79 GHz with a minimum insertion loss of 2.37 dB and return loss better than 15 dB. A total of 2.59 GHz center frequency shift was achieved when membranes deflected from −50 μm to +150 μm.
Abstract:
A bonding technique suitable for bonding a non-metal body, such as a silicon MEMS sensor, to a metal surface, such a steel mechanical component is rapid enough to be compatible with typical manufacturing processes, and avoids any detrimental change in material properties of the metal surface arising from the bonding process. The bonding technique has many possible applications, including bonding of MEMS strain sensors to metal mechanical components. The inventive bonding technique uses inductive heating of a heat-activated bonding agent disposed between metal and non-metal objects to quickly and effectively bond the two without changing their material properties. Representative tests of silicon to steel bonding using this technique have demonstrated excellent bond strength without changing the steel's material properties. Thus, with this induction bonding approach, silicon MEMS devices can be manufacturably bonded to mechanical steel components for real time monitoring of the conditions/environment of a steel component.
Abstract:
A microfabricated actuator of the vertical comb-drive (AVC) type or staggered vertical comb-drive type for torsional or linear applications includes torsion springs which permit self-aligned deformation of the device (micromirror) structure of the actuator through the heating of the torsional springs to plasticity. The torsional springs can include perpendicular-beam springs or double folded beams which allow axial movement of the spring when heated. Heating of the springs can be by bulk heating of the actuator structure or by Joule heating to the torsional springs by passing an electrical current therethrough.
Abstract:
An inertial sensor includes a plate-like substrate layer, a mass body, a support frame, a limit stop extending in the central direction of the mass body from the support frame, and a detection unit detecting the displacement of the displacement part. The inertial sensor adopts the limit stop limiting the downward displacement of the mass body to prevent the support portion of the mass body from being damaged.
Abstract:
Disclosed herein is an inertial sensor. The inertial sensor includes: a plurality of driving masses; support bodies supporting the driving masses so as to freely move in a state in which the driving masses float; a connection bridge connecting the plurality of driving masses and connecting the plurality of driving masses with the support bodies; and an electrode pattern part including driving electrodes simultaneously driving the driving masses and sensing electrode detecting axial Coriolis force of each of the driving masses.
Abstract:
The present invention discloses a waveguide antenna structure and a method of manufacture. The waveguide antenna structure can include a non-metallic substrate having a waveguide channel extending along a first direction and an inlet channel extending along a second direction. The inlet channel intersects with the waveguide channel and both channels are at least partially coated with a metallic material. The waveguide channel can have a generally U-shaped cross-section with an open side that is at partially enclosed by a slot plate that is attached to the non-metallic substrate.
Abstract:
Systems and methods for local synthesis of silicon nanowires and carbon nanotubes, as well as electric field assisted self-assembly of silicon nanowires and carbon nanotubes, are described. By employing localized heating in the growth of the nanowires or nanotubes, the structures can be synthesized on a device in a room temperature chamber without the device being subjected to overall heating. The method is localized and selective, and provides for a suspended microstructure to achieve the thermal requirement for vapor deposition synthesis, while the remainder of the chip or substrate remains at room temperature. Furthermore, by employing electric field assisted self-assembly techniques according to the present invention, it is not necessary to grow the nanotubes and nanowires and separately connect them to a device. Instead, the present invention provides for self-assembly of the nanotubes and nanowires on the devices themselves, thus providing for nano-to micro-integration.
Abstract:
Methods for surface micro-machining silicon wafers, including coating cavity sidewalls with oxidation-resistant material to prevent lateral oxidation. This in turn prevents "bird's beak" during formation of a diaphragm. The methods are useful for, among other things, the manufacture of absolute-type pressure sensors. Along with bulk micro-machining techniques, the methods can be used to produce gauge- and differential-type pressure sensors, as well.
Abstract:
A micromechanical filter having planar components, and manufacturable using very large scale integrated circuit microfabrication techniques. The input and output transducers are interdigitated comb electrodes. The mechanical coupling between the input and output transducers includes planar flexures, displacement of the electrodes producing bending of the elements of the flexures. By sealing micromechanical filters in a vacuum and providing on-board circuitry, high signal-to-noise ratios and quality factors are achievable. Construction of a real-time spectrum analyzer using many micromechanical resonators, provides a device with high accuracy and a short sample time.