Abstract:
A power semiconductor device includes a substrate, a main body and an electrode unit. The main body includes an active portion, an edge termination portion surrounding the active portion, and an insulating layer disposed on the edge termination portion. The edge termination portion includes a first-type semiconductor region, and a plurality of spaced-apart second-type semiconductor segments distributed in the first-type semiconductor region and arranged at intervals along a Y-direction directing from the insulating layer toward the substrate, and an X-direction directing from the active portion toward the edge termination portion. The electrode unit includes a first electrode and a second electrode.
Abstract:
A driving system for a light emitting device includes a data latch unit to store first logic data, a shift register unit to store second logic data, a multiplexer unit to selectively output the first and second logic data, and a driving unit converting the logic data outputted by the multiplexer unit into a driving output that is provided to the light emitting device.
Abstract:
A control circuit for reducing electromagnetic interference is provided. The control circuit includes a periodic signal generator and a modulation controller. The periodic signal generator adjusts a modulation periodic signal generated by the periodic signal generator, according to a feedback modulation signal. The modulation controller is coupled to the periodic signal generator, for receiving the modulation periodic signal, and adjusting a frequency of the received modulation periodic signal according to a plurality of delay periods set according to a plurality of control signals, and generating the feedback modulation signal.
Abstract:
A light-emitting diode (LED) driving circuit includes a power factor correction (PFC) circuit and a driving controller. The PFC circuit controls a power factor of the LED driving circuit. The LED driving circuit includes an inductor, a switch, a current detection circuit, and a time detection circuit. The inductor senses an inductor current and provide energy to at least one LED. The switch connected to the inductor is conducted according to a driving signal. The current detection circuit connected to the switch detects inductor current information. The time detection circuit connected to the switch detects an energy discharging time during which the inductor current decrease from a peak value to zero. The driving controller connected to the switch, the current detection circuit, and the time detection circuit outputs the driving signal to the switch according to the voltage level and the energy discharging time.
Abstract:
A resonant converter with power factor correction includes a power-obtaining circuit, an energy-storage element and an energy-transferred circuit. The power-obtaining circuit is used for receiving an input line voltage. The energy-storage element is coupled between the power-obtaining circuit and the energy-transferred circuit. The energy-transferred circuit is used for generating an output power. In a first time period, based on a first control signal, the energy-storage element and the power-obtaining circuit operate a soft switching so that the energy-storage element is charged to obtain the input line power and generate an energy-storage voltage. In a second time period, based on a second control signal, the energy-storage element and the energy-transferred circuit operate a soft switching so that the energy-storage element is discharged to make the energy-storage voltage converted into the output power.
Abstract:
An assembled LED display device includes a system motherboard, and multiple to-be-assembled daughterboards assembled on the system motherboard. The system motherboard includes a drive power circuit including multiple power lines, and a gate control circuit including multiple gate lines. Each to-be-assembled daughterboard includes a substrate, at least one transistor switch, and a plurality of LED units disposed on the substrate and each including multiple LEDs connected to a same one of the at least one transistor switch. The LEDs of the LED units of the to-be-assembled daughterboards are arranged in a matrix having multiple rows and multiple columns. With respect to each column, the LEDs in the column are connected to the power line corresponding to the column. With respect to each to-be-assembled daughterboard, gate terminal(s) of the at least one transistor switch is(are) connected to the gate line corresponding to the to-be-assembled daughterboard.
Abstract:
An interleaving driving method of light emitting diode array comprises: receiving image signal; converting the image signal into gray scale signals, the gray scale signals correspond to the plurality of light emitting channels, respectively, to execute multiple steps. The multiple steps include: generating a high gray scale data group and a low gray scale data group; when there is data in the high gray scale data group, drive the light emitting diode channel corresponding to the target gray scale signal during a first turn on time interval; when there is data in the low gray scale data group, drive the light emitting diode channel corresponding to the target gray scale signal during a second turn on time interval which does not overlap the first turn on time interval and a first gray scale signal and a second gray scale signal of the gray scale signals does not overlap each other.
Abstract:
A method for transferring micro light emitting diodes (micro-LEDs) includes forming a plurality of micro light emitting diode (micro-LED) chips having an epitaxial stacked layer and an electrode on a base; attaching the electrodes of the micro-LED chips to a temporary substrate and removing the base from the micro-LED chips; forming a light shielding layer on the temporary substrate; forming a light-transmissible packaging layer to cover the light shielding layer and the micro-LED chips; removing the temporary substrate to form a light emitting assembly; dividing the light emitting assembly to separate a plurality of pixels constituted by the micro-LEDs; and transferring the pixels to a permanent substrate.
Abstract:
A method of building a model of defect inspection for a light-emitting diode (LED) display is adapted to be implemented by a model-building system. The model-building system stores captured images respectively of LED displays that were displaying images. Each of the captured images corresponds to a status tag that indicates a status of the image being displayed by the respective one of the LED displays. The method includes: performing data preprocessing on the captured images to result in pieces of pre-processed data that respectively correspond to the captured images; and building a model of defect inspection by using an algorithm of machine learning based on the pieces of pre-processed data and the status tags.
Abstract:
A scan-type display apparatus includes an LED array and a data driver. The LED array has a common anode configuration, and includes multiple scan lines, multiple data lines and multiple LEDs. The data driver includes multiple data driving circuits, each of which includes a current driver and a detector. The current driver has an output terminal connected to the data line corresponding to the data driving circuit, and outputs one of a drive current and a clamp voltage at the output terminal of the current driver based on a pulse width control signal. The detector is connected to the current driver, and generates a detection signal that indicates whether any one of the LEDs connected to the data line corresponding to the data driving circuit is short circuited based on a detection timing signal and a feed-in voltage related to a voltage at the output terminal of the current driver.