Abstract:
A surface micromachined electromagnetically radiating antenna includes a coplanar waveguide on a ground plane coated substrate having a conductor path. The conductor path is coupled to a monopole conductor, which has a generally-cylindrical backbone erected vertically from the substrate and a metal layer deposited on the backbone at a predetermined thickness. The antenna may be fabricated by depositing an epoxy on the ground plane coated substrate to a predetermined depth and according to a pattern. The epoxy is exposed to an ultraviolet source that develops one or more columns according to the pattern. A seed layer of metal may be formed on the developed column. A conductive metal is electrodeposited over the column surface to produce the monopole antenna. Other antenna may be created by adding monopoles and/or conductive metal patches and/or strips that are positioned atop the monopoles and elevated from the substrate.
Abstract:
Electronic and optical (or photonic) devices with variable or switchable properties and methods used to form these devices, are disclosed. More specifically, the present invention involves forming layers of conductive material and dielectric material or materials with varying conductivity and indexes of refraction to form various electronic and optical devices. One such layer of adjustable material is formed by depositing epitaxial or reduced grain boundary barium strontium titanate on the C-plane of sapphire.
Abstract:
An apparatus and method for simultaneous detection of N gas species through laser radiation attenuation techniques is disclosed. Each of the N species has a spectral absorption band. N laser sources operate at a wavelength λN in a spectral absorption band separated by the cutoff wavelength for single-mode transmission. Each laser source corresponds to a gas species and transmits radiation through an optical fiber constructed and arranged to provide single-mode transmission with minimal power loss.
Abstract:
A micromachined structure having electrically isolated components is formed by thermomigrating a dopant through a substrate to form a doped region within the substrate. The doped region separates two portions of the substrate. The dopant is selected such that the doped region electrically isolates the two portions of the substrate from each other via junction isolation.
Abstract:
One embodiment of a thermal management system comprises a heated body, where a heat energy is contained within this heated body. This first embodiment also comprises an ambient fluid adjacent to an exterior surface of the heated body. Walls forming a channel are disposed within an interior of the heated body. The heat contained in the heated body is moved into at least one of these channel walls. The first embodiment comprises a synthetic jet actuator adjacent to one of the channel walls. The synthetic jet actuator is positioned so as to direct a synthetic jet flow through the channel. The operation of the synthetic jet actuator creates a flow consisting of the ambient fluid though the channel. This flow of ambient fluid cools the walls of the channel and thereby also cools the heated body itself.
Abstract:
Methods for creating one or more structures in a micromachined device. In one arrangement, the methods include the steps of providing a substrate, forming upstanding nonconductive mold walls on the substrate so that first and second wells are formed, the second well being wider than the first well. The method further includes applying a first material to the surface of the wells so that the first well fills with the first material before the second well, and removing the first material from the second well while leaving a portion in the first well.
Abstract:
A planar fully integrated variable reluctance micromotor (10) is microfabricated on a substrate base (18). The micromotor includes a pin (19), rotor (12) with radially extending poles (16), and a stator (20) having a plurality of poles (21) configured in pairs (22) circumferentially spaced about the rotor. The rotor is microfabricated in place, or in situ, contiguous to the substrate base. The pairs of stator poles include a multilevel core (26) wrapped around a meander conductor (27) which is connected to bonding pads (32). The variable reluctance micromotor is particularly adapted to operating as a micropump (45) for conductive fluids.
Abstract:
Three dimensional communication within an integrated circuit occurs via electromagnetic communication between emitters and detectors situated throughout the integrated circuit. The emitters and detectors can be produced in a diode or laser configuration. The emitters and detectors can be fabricated via novel lift-off and alignable deposition processes. Integrated circuit layers, including silicon and gallium arsenide, are transparent to the electromagnetic signals propagated from the emitter and received by the detector. Furthermore, arrays of optical detectors can be implemented to perform image processing with tremendous speed. Processing circuitry can be situated directly below the optical detectors to process in massive parallel signals from individual optical detectors.
Abstract:
Various novel processes permit integrating thin film semiconductor materials and devices using lift off, alignment, and deposition onto a host substrate. As a result, three dimensional integrated circuits can be constructed. Three dimensional communication in an integrated circuit can be implemented via electromagnetic communication between emitters and detectors fabricated via the novel processes. Integrated circuit layers are transparent to the electromagnetic signals propagated from the emitter and received by the detector. Furthermore, arrays of optical detectors can be implemented to perform image processing with tremendous speed. Processing circuitry can be situated directly below the optical detectors to process in massive parallel signals from individual optical detectors.
Abstract:
An optical device for integrated photonic applications includes a substrate, a dielectric waveguide and a surface plasmon waveguide. The dielectric waveguide includes a dielectric waveguide core disposed relative to a dielectric waveguide cladding and a common cladding. The surface plasmon waveguide includes a surface plasmon waveguide core disposed relative to the common cladding and a surface plasmon waveguide cladding. The common cladding couples the dielectric waveguide and the surface plasmon waveguide.