Abstract:
Various systems and methods are provided for surgical and interventional planning, support, post-operative follow-up, and functional recovery tracking. In general, a patient can be tracked throughout medical treatment including through initial onset of symptoms, diagnosis, non-surgical treatment, surgical treatment, and recovery from the surgical treatment. In one embodiment, a patient and one or more medical professionals involved with treating the patient can electronically access a comprehensive treatment planning, support, and review system. The system can provide recommendations regarding diagnosis, non-surgical treatment, surgical treatment, and recovery from the surgical treatment based on data gathered from the patient and the medical professional(s). The system can manage the tracking of multiple patients, thereby allowing for data comparison between similar aspects of medical treatments and for learning over time through continual data gathering, analysis, and assimilation to decision-making algorithms.
Abstract:
Methods and devices are provided for replacing damaged, injured, diseased, or otherwise unhealthy elements of the spinal three-joint complex, such as the facet joints and discs. In one exemplary embodiment, a joint replacement system includes a facet replacement component that is adapted to replace and/or augment the facet joints, and a disc replacement component that is adapted to replace a spinal disc. The facet replacement component and the disc replacement component can couple to one another to allow and/or control flexion, extension, and/or lateral bending of the spine, preferably while substantially restricting posterior-anterior shear and axial rotation of the spine.
Abstract:
An intervertebral disc prosthesis comprises a superior endplate and an inferior endplate. The superior and inferior endplates include vertebra fixation surfaces designed to engage vertebral bodies. A composite material is provided on the vertebra fixation surfaces. The composite material includes an osteoconductive component and an osteoinductive component. The osteoconductive component provides a porous matrix or base that facilitates bone growth. The osteoinductive component provides a stimulant material that encourages growth of the bone cells between the osteoconductive component of the endplate and the vertebral body facing the endplate. In one embodiment, the osteoconductive component is permeated by an osteoinductive material to provide the composite material. In another embodiment, the composite material includes a non-resorbable portion that includes osteoconductive substances and a resorbable portion that is doped with osteoinductive substances.
Abstract:
Methods and devices are provided for replacing damaged, injured, diseased, or otherwise unhealthy elements of the spinal three-joint complex, such as the facet joints and discs. In one exemplary embodiment, a joint replacement system includes a facet replacement component that is adapted to replace and/or augment the facet joints, and a disc replacement component that is adapted to replace a spinal disc. The facet replacement component and the disc replacement component can couple to one another to allow and/or control flexion, extension, and/or lateral bending of the spine, preferably while substantially restricting posterior-anterior shear and axial rotation of the spine.
Abstract:
An automatic washer comprises a remote sump fluidly connected to a drain pump and a recirculation pump, and a separator comprising an array of regularly-spaced fins oriented upstream of the recirculation pump for intercepting foreign objects in wash liquid. The remote sump also comprises a wash liquid heater. The separator is automatically purged when the drain pump is operated.
Abstract:
Methods for securing a intervertebral cage to one or more levels of the spine with fixation. The fixation, which is typically a staple, is intended to be driven perpendicular to the proximal face of the cage and in-line with the inserter. After the cage is placed and positioned according to surgeon preference, a single piece fixation clip is then deployed and fixed in a manner that produces a zero-profile device.
Abstract:
A method of implanting an intervertebral disc prosthesis in a patient comprises selecting a superior and inferior endplates from a plurality of endplates having different endplate features. The different endplate features include different structural and material composition features. In addition, a core is selected from a plurality of cores having different core features such as different structural and material composition features. In one embodiment, the core is a composite core comprised of a first material and a different second material. After the endplates and core are selected, the intervertebral disc prosthesis is assembled with the selected core positioned between the selected endplates. The assembled intervertebral disc prosthesis is then positioned on an insertion tool and implanted in the patient.
Abstract:
Methods for securing a intervertebral cage to one or more levels of the spine with fixation. The fixation, which is typically a staple, is intended to be driven perpendicular to the proximal face of the cage and in-line with the inserter. After the cage is placed and positioned according to surgeon preference, a single piece fixation clip is then deployed and fixed in a manner that produces a zero-profile device.
Abstract:
An intervertebral disc prosthesis comprises a first prosthesis component, a second prosthesis component, and an intermediate prosthesis component positioned between the first prosthesis component and the second prosthesis component. The first prosthesis component and second prosthesis component are configured to rotate upon the intermediate prosthesis component. The first prosthesis component includes a vertebra facing surface with a central channel formed in the vertebra facing surface. The central channel is designed and dimensioned to engage an insertion arm of a disc insertion tool. The first prosthesis component also includes at least one indentation configured to engage at least one retention arm of the disc insertion tool. The at least one indentation of the first prosthesis component may comprises at least one groove formed in a collar of the first prosthesis component. In one embodiment, the first and second prosthesis components are plates and the intermediate prosthesis component is a core.