Abstract:
The present invention relates to compositions and processes of making and using interpolymers having a controlled molecular weight distribution. Multilayer films and film layers derived from novel ethylene/α-olefin interpolymers are also disclosed.
Abstract:
The present invention relates to compositions and processes of making and using interpolymers having a controlled molecular weight distribution. Multilayer films and film layers derived from novel ethylene/α-olefin interpolymers are also disclosed.
Abstract:
Polymer blends are disclosed that include from about 5 percent (by weight of the total composition) to about 95 percent (by weight of the total composition) of at least one first ethylene interpolymer having at least one first comonomer, and from about 95 percent (by weight of the total composition) to about 5 percent (by weight of the total composition) of at least one second ethylene interpolymer having at least one second comonomer. In the disclosed blends, the first comonomer is different from the second comonomer and the melt index (I2) of the first ethylene interpolymer is less than or equal to the melt index (I2) of the second ethylene interpolymer. The blend are also characterized as having a density of greater than or equal to 0.90 g/cc. Articles made from such blends are also disclosed.
Abstract:
The present invention pertains to a continuous process and polymerization system characterized by separate injection of catalyst and make-up feed, an ethylene interpolymer composition characterized as having broad molecular weight distribution (MWD) and optimized compositional uniformity, a process for making such a composition and a fabricated article made from such composition. The novel composition is characterized as having a melt flow ratio, I10/I2, from 8 to 30, a Mw/Mn of greater than 4 as determined by gel permeation chromatography, a melt index, I2, from 0.01 to 1000 grams/10 minutes, preferably greater that 0.1 to 10 grams/10 minutes, and a density less than 0.945 g/cm3. The novel composition exhibits good processibility and improved toughness properties, especially excellent film tear and impact resistance, and is particularly well-suited for use in applications such as high performance trash can liners and heavy duty shipping bags.
Abstract:
The present invention pertains to a continuous process and polymerization system characterized by separate injection of catalyst and make-up feed, an ethylene interpolymer composition characterized as having broad molecular weight distribution (MWD) and optimized compositional uniformity, a process for making such a compostion and a fabricated article made from such composition. The novel composition is characterized as having a melt flow ratio, I10/I2, from 8 to 30, a Mw/Mn of greater than 4 as determined by gel permeation chromatography, a melt index, I2, from 0.01 to 1000 grams/10 minutes, preferably greater that 0.1 to 10 grams/10 minutes, and a density less than 0.945 g/cm3. The novel composition exhibits good processibility and improved toughness properties, especially excellent film tear and impact resistance, and is particularly well-suited for use in applications such as high performance trash can liners and heavy duty shipping bags.
Abstract:
Polymer mixtures are disclosed which comprise at least one homogeneously branched ethylene polymer (A) and at least one ethylene polymer (B) having a crystallinity which is at least 7% greater than the crystallinity of polymer (A) with certain provisos. A process for making a molded article using the disclosed polymer mixtures is disclosed as well as films, film layers, coatings and molded articles formed from those mixtures. These mixtures have several advantages over polymer compositions of the prior art, including improved properties at elevated temperatures such as improved softening point under load, improved hardness, improved toughness, improved 100% modulus of elasticity, improved compression set, improved ability to prevent oil bleed out at lower temperatures when the mixture contains oil and reduced injection molding cycle time. The mixtures retain their performance advantages even when substantial amounts of additives such as oil and filler are incorporated into the mixture. The mixtures may also be crosslinked after they are formed into the shape of an article to form vulcanized elastomeric products. The polymer mixtures have utility in a variety of applications.
Abstract:
A solution polymerization system for polymerizing a olefin monomer by reacting the monomer with catalyst and solvent has been invented. The system in one aspect including a flow loop with a product polymer outlet, the flow loop forming a recycling reactor, a catalyst inlet on the flow loop through which catalyst and solvent flow into the flow loop, a monomer inlet on the flow loop through which monomer and solvent flow into the flow loop and, with the catalyst, form a reactant materials stream, a first heat exchanger on the flow loop for receiving the reactant materials stream and any formed polymer and for removing heat of reaction or polymerization from the flow loop, and pump apparatus for pumping the reactant materials stream and formed polymer in the flow loop and from the first heat exchanger to the product polymer outlet. In one aspect, the system includes at least one additional heat exchanger on the flow loop for receiving the reactant materials stream and formed polymer and for removing heat of reaction or polymerization from the flow loop, the pump apparatus pumping formed polymer and remaining reactant materials to the product polymer outlet, and a portion of the formed polymer and remaining reactant materials flowing out from the product polymer outlet and the remainder recycling through the flow loop. In one aspect systems and methods according to the present invention are used to make polyethylene.
Abstract:
The subject invention provides a polymer mixture having high heat resistivity, low hexane extractive and controllably lower or higher modulus. The mixture is comprised of at least one first substantially linear ethylene polymer, Component (A), and at least one second ethylene polymer which is a homogeneously branched polymer, heterogeneously branched linear polymer or a non-short chain branched linear polymer. When fabricated into film, the mixture is characterized by a heat seal initiation temperature which is substantially lower than its Vicat softening point as well as a high ultimate hot tack strength. When fabricated as a molded article, the mixture is characterized by high microwave warp distortion while maintaining a lower modulus. The polymer mixture is particularly well-suited for use in multilayer film structures as a sealant layer for such applications as cook-in packages, hot-fill packages, and barrier shrink films. In molding applications, the mixture is well-suited as freezer-to-microwave food storage containers and lids which maintain good flexibility at low temperature to allow easy openability of such containers.
Abstract:
An ethylene polymer extrusion composition having high draw down and substantially reduced neck-in, a process for making such a composition and a process of using such a composition to prepare extrusion coatings, extrusion profiles and extrusion cast films are disclosed. The ethylene polymer extrusion composition is made of 75-95 weight percent of at least one ethylene .alpha.-olefin interpolymer and 5-25 weight percent of at least one high pressure ethylene polymer characterized as having high melt strength and a broad, bimodal molecular weight distribution. In profiles, coatings or films, the composition can be used as sealant, adhesive or abuse resistance layers.
Abstract:
The invention provides a polymerization process comprising polymerizing a reaction mixture comprising one or more monomer types, at least one catalyst, and at least one solvent, to form a polymer dispersion, and wherein the at least one catalyst is soluble in the at least one solvent, and wherein the polymer forms a dispersed phase in the solvent, and wherein the at least one solvent is a hydrocarbon. The invention provides a composition comprising an ethylene-based polymer comprising at least the following properties: a) a weight average molecular weight (Mw(abs)) greater than, or equal to, 60,000 g/mole; and b) a molecular weight distribution (Mw(abs)/Mn(abs)) greater than, or equal to, 2.3.