Abstract:
The present disclosure is directed at an apparatus, method and plant for desalinating saltwater and contaminated saltwater. The apparatus includes a stack and a manifolding assembly. The stack includes a product chamber, a first and second concentrate chamber, an anion exchange membrane forming a boundary between the first concentrate chamber and the product chamber and a cation exchange membrane forming a boundary between the second concentrate chamber and the product chamber. The manifolding assembly includes product and concentrate manifolding fluidly coupled to the product and concentrate chambers respectively, to convey a saltwater being desalinated to and away from the product chamber, and a concentrate to and away from the concentrate chambers. The stack may include a diluent chamber and adjacent anion or cation exchange membranes between the product chamber, diluent chamber and concentrate chamber to respectively convey anions or cations across multiple chambers.
Abstract:
A resilient cation exchange membrane including a porous matrix impregnated with a cross-linked homogenous ion-transferring polymer that fills the pores and substantially covers the surfaces of the porous matrix. The cross-linked homogenous ion-transferring polymer formed by polymerizing a homogeneous solution including (i) a hydrophilic ionic monomer selected from a group consisting of 2-acrylamido-2-methyl-1-propanesulfonic acid, 2-acrylamido-2-methyl-1-propanesulfonic acid salts, sodium 4-vinylbenzenesulfonate, and 3-sulfopropyl acrylate potassium, with (ii) a hydrophobic cross-linking oligomer selected from a group consisting of polyurethane oligomer diacrylate, polyester oligomer diacrylate, epoxy oligomer diacrylate, polybutadiene oligomer diacrylate, silicone diacrylate, dimethacrylate counterparts thereof, polyurethane oligomers having three or more vinyl groups, polyester oligomers having three or more vinyl groups, and mixtures thereof.
Abstract:
A system, apparatus and method for concentrating a solution. The system includes a humidification device and a solution flow path for flow of a solution to be concentrated to the humidification device. The humidification device includes humidification media to facilitate evaporation of liquid from the solution to be concentrated to gas as the solution to be concentrated passes through the humidification media thereby concentrating the solution. The method includes flowing a solution to be concentrated along a flow path to a humidification device including humidification media, flowing a gas through the humidification media, and flowing the solution to be concentrated through the humidification media. There is evaporation of liquid from the solution to the gas as the solution passes through the humidification media thereby concentrating the solution and producing a humidified gas. The solution to be concentrated may be salt water and the gas may be air.
Abstract:
A method for filtering suspended solids from a feed fluid involves filtering the feed fluid by pumping the feed fluid through a first retentate channel of a first cross-flow membrane unit and through a second retentate channel of a second cross-flow membrane unit that is connected in parallel with the first membrane unit. The retentate exiting the units after filtering is pumped through a suspended solids concentrating path. While the filtering is being performed by both membrane units, at least one of the membrane units may be cleaned by performing a forward flush on it in which a portion of the retentate from at least one of the first and the second retentate channels is drawn into a forward flushing path. The forward flushing path is fluidly connected to the retentate channel of the membrane unit that is being forward flushed.
Abstract:
Methods, systems, and techniques for desalinating a saltwater using a humidifier unit. The humidifier unit has a housing, which has a carrier gas inlet and a saltwater inlet. The humidifier unit also includes a packing, within the housing, having a surface with a critical surface tension of less than 25 mN/m according to the Zisman method. The packing is arranged to facilitate a saltwater that enters the housing through the saltwater inlet and a carrier gas that enters the housing through the carrier gas inlet to contact each other. The contact facilitates evaporation of the saltwater, which produces salt solids on at least a surface of the packing, a humidified gas and a concentrated brine.
Abstract:
Systems, processes, and techniques for treating a saltwater contaminated with volatile compounds. The saltwater is evaporated, resulting in a gas composed of water vapor and gaseous volatile compounds. This gas is then condensed into a condensate contaminated with the volatile compounds. The contaminated condensate is biologically treated to remove those volatile compounds, producing a purified water. Latent heat released by the condensing is used to evaporate the purified water into the atmosphere in an energy efficient manner. The contaminated saltwater is accordingly evaporatively disposed of without creating an issue regarding how to manage substantial liquid water byproduct, and without emitting substantial amounts of the volatile compounds into the atmosphere.
Abstract:
A process for preparing an acrylamide-based crosslinking monomer including reacting in the presence of a catalyst an isocyanate compound containing at least two isocyanate groups with one of acrylic acid and methacrylic acid.
Abstract:
A process and system for removing ammonia from an aqueous ammonia solution. A first aqueous solution and the ammonia solution are flowed respectively through a first and a second separation chamber of a bipolar membrane electrodialysis (“BPMED”) stack. The first separation chamber is bounded on an anodic side by a cation exchange membrane and the second separation chamber is bounded on a cathodic side by the cation exchange membrane and on an anodic side by a bipolar membrane. The bipolar membrane has an anion-permeable layer and a cation-permeable layer respectively oriented to face the stack's anode and cathode. While the solutions are flowing through the stack a voltage is applied across the stack that causes the bipolar membrane to dissociate water into protons and hydroxide ions. The protons migrate into the second separation chamber and react there with ammonia to form ammonium ions that migrate to the first separation chamber.
Abstract:
A process for preparing an acrylamide-based crosslinking monomer comprising reacting in the presence of a catalyst an isocyanate compound containing at least two isocyanate groups with one of acrylic acid or methacrylic acid. These acrylamide-based crosslinking monomers are used in the preparation of coating compositions, adhesive compositions curable by applying thermal or radiation energy, and in the preparation of cation or anion exchange membranes.
Abstract:
A monovalent ion permselective ion exchange membrane comprising a base layer consisting of an ion exchange membrane, and a monovalent ion permselective layer affixed to the surface of the base layer. The monovalent ion permselective layer is formed by coating and polymerizing a polymerizable solution onto the base ion exchange membrane layer. The polymerizable solution comprises: (i) of an ionic monomer having one or more ethylenic groups selected from (meth)acryloxy groups, (meth)acryl-amido groups, and vinylbenzyl groups, (ii) a hydrophobic crosslinking monomer having two or more ethylenic groups selected from (meth)acryloxy groups, (meth)acrylamido groups, and vinylbenzyl groups, (iii) a free radical initiator, in (iv) a solvent medium. The monovalent ion permselective ion exchange membranes include monovalent cation permselective ion exchange membranes and monovalent anion permselective ion exchange membranes. Also disclosed are processes for preparing the monovalent ion permselective ion exchange membranes.