Abstract:
The stop time of a whole apparatus caused by planning of shaping, maintenance, replacement of a material, or the like is shortened. A three-dimensional laminating and shaping apparatus includes a plurality of shaping chambers, at least one material supplier that supplies a material of a three-dimensional laminated and shaped object onto a shaping table in each of the shaping chambers, at least one light beam irradiator that irradiates the material with a light beam, and a controller that controls the material supplier and the light beam irradiator. If the material supplier supplies the material onto one of the shaping tables, the controller controls the light beam irradiator to perform irradiation of the light beam onto the other one of the shaping tables.
Abstract:
A three-dimensional laminating and shaping apparatus capable of measuring the quality of a three-dimensional laminated and shaped object in real time during shaping of the three-dimensional laminated and shaped object includes a material ejector that ejects the material of the three-dimensional laminated and shaped object onto a shaping table on which the three-dimensional laminated and shaped object is shaped, a light beam irradiator that irradiates the ejected material with a light beam, a data acquirer that acquires monitoring data used to monitor a shaping state of the three-dimensional laminated and shaped object during shaping of the three-dimensional laminated and shaped object, and a shaping quality estimator that estimates shaping quality of the three-dimensional laminated and shaped object based on the monitoring data.
Abstract:
This invention can maintain the temperature of the shaping plane in a three-dimensional layer-by-layer shaping apparatus. A three-dimensional layer-by-layer shaping apparatus includes a material spreader that spreads the material or materials of a three-dimensional layer-by-layer shaped object onto the shaping plane on which the three-dimensional layer-by-layer shaped object is to be shaped; an electron gun that generates an electron beam; at least one deflector that deflects the electron beam so that it scans the shaping plane one- or two-dimensionally; at least one lens that is positioned between the electron gun and the deflector, and focuses the electron beam; a focus controller that controls the focus of the electron beam based on which region is to be scanned by the electron beam; and a controller that controls the deflecting direction of the deflector and the scanning rate.
Abstract:
The present invention is a granular material that can be well recoated regardless of the type of the granular material, and enables a refractory aggregate in an unprinted portion to be used without any regeneration process, in the manufacture of a three-dimensional laminated and shaped mold. This granular material is a granular material for use in three-dimensional laminated mold shaping, and obtained by adding a material that causes a hydration reaction having a moisture absorbing function and generates a catalytic effect to a coating material mixed with or coated with an acid as a catalyst which activates and hardens an organic binder for binding the granular material.
Abstract:
Provided is a granular material which generates no harmful gas at the time of pouring, reduces a gas defect as one of casting defects, and is readily reusable after pouring, in the manufacture of a three-dimensional laminated and shaped mold. This granular material is a granular material for use in a three-dimensional laminated and shaped mold manufacturing apparatus, and includes magnesium sulfate. The amount of magnesium sulfate included in the granular material is 1 to 10 pts·mass with respect to 100 pts·mass of the granular material. The amount of water included in the granular material is 0.1 mass % or less except for crystallization water of magnesium sulfate.
Abstract:
This specification discloses an optical processing head including a light guide portion that guides, to a process surface, a ray for processing. The light guide portion is further configured to guide, to the process surface, a ray for inspection different in wavelength from the ray for processing. The optical processing head further includes an inspection portion that inspects the state of the process surface based on reflected light of the ray for inspection reflected by the process surface. With the optical processing head, the state of the process surface can be easily inspected even during optical processing.
Abstract:
An optical processing head that detects a trouble of an optical processing head that will be generated at the time of optical processing before the trouble occurs is disclosed. The optical processing head that performs processing by condensing, on a process surface, a ray emitted by a light source for processing includes a cylindrical housing that surrounds a ray for processing emitted by the light source for processing, a ray emitter for inspection that is incorporated in the cylindrical housing and arranged outside the path of the ray for processing, and a light receiver that is incorporated in the cylindrical housing, arranged outside the path of the ray for processing, and receives a ray for inspection emitted by the ray emitter for inspection. The contamination of the inner surface of the cylindrical housing or the concentration of a scattering object flowing into the cylindrical housing is inspected by using a signal acquired from the light receiver.
Abstract:
A laser heating control mechanism according to this invention is a mechanism that performs proper adjustment of preheating or postheating by a simple operation in three-dimensional shaping. The laser heating control mechanism is a laser heating control mechanism for preheating or postheating a heating target object. The laser heating control mechanism includes an optical fiber that transmits a laser beam and radiates the laser beam from an opening end face, a collimation optical system that fucuses the laser beam radiated from the opening end face onto the heating target object, and an irradiation range adjustment mechanism that adjusts the distance between the opening end face and the collimation optical system along the irradiation axis of the laser beam so as to irradiate the heating target object with the laser beam at a predetermined beam diameter.
Abstract:
A calculation device used in a manufacturing apparatus for producing a 3D manufactured object from a solidified layer formed by heating a layer-shaped material layer formed of a powder material by irradiation with an energy beam includes a detection unit configured to obtain a state of the material layer based on a shape of the formed material layer, and an output unit configured to output information on the state of the material layer obtained by the detection unit to set a manufacturing condition of the manufacturing apparatus.
Abstract:
An additive manufacturing development method includes predicting a defect that occurs in a product based on a combination of a plurality of design data and a plurality of manufacturing conditions, collecting defect detection data for defect detection by monitoring the product during manufacturing in accordance with the combination of the plurality of design data and the plurality of manufacturing conditions, and generating a process map in which the plurality of manufacturing conditions are plotted using the predicted defect and the collected defect detection data. The method further includes collecting defect repair data for defect repair by monitoring the product during manufacturing and repairing a defect detected from the product, and storing the defect and the defect repair data in association with each other using the defect repair data and a repair result.