Abstract:
The present invention relates to the use of triazole derivatives selected from the group consisting of triazolopyrimidine derivatives and triazolouracil derivatives in organic light-emitting diodes (OLEDs), an OLED comprising at least one of the organic triazole derivatives mentioned, a light-emitting layer comprising at least one of the triazole derivatives mentioned, an OLED comprising the light-emitting layer of the invention, a device comprising an OLED according to the invention and also specific novel triazole derivatives.
Abstract:
The invention relates to the use of rylene derivatives of the general formula (I) as markers for liquids, where the symbols and indices have the meanings given in the specification.
Abstract:
The present invention relates to the use of transition metal-carbene complexes in organic light-emitting diodes (OLEDs), to a light-emitting layer, to a blocking layer for electrons or excitons, or to a blocking layer for holes, each comprising these transition metal-carbene complexes, to OLEDs comprising these transition metal-carbene complexes, to devices which comprise an inventive OLED, and to transition metal-carbene complexes.
Abstract:
The present invention relates to the use of triazole derivatives selected from the group consisting of triazolopyrimidine derivatives and triazolouracil derivatives in organic light-emitting diodes (OLEDs), an OLED comprising at least one of the organic triazole derivatives mentioned, a light-emitting layer comprising at least one of the triazole derivatives mentioned, an OLED comprising the light-emitting layer of the invention, a device comprising an OLED according to the invention and also specific novel triazole derivatives.
Abstract:
A resonance scanner, wherein a frame (3), a drive plate (4), a mirror (5) and torsion springs (6, 7) form an actuator part (1), said drive plate (4) being attached within the frame (3) by two first torsion springs (6) such that the drive plate (4) can oscillate about a common first axis of torsion (8) of both torsion springs (6), said mirror (5) being attached within the drive plate (4) by two second torsion springs (7) such that the mirror (5) can oscillate about a common second axis of torsion (9) of both torsion springs (7), and said first axis of torsion (8) and said second axis of torsion (9) being parallel to each other; wherein, further, only the frame (3) of the actuator part (1) is attached to side walls (10) of a box-shaped stator part (2), a drive means (stator electrodes 15 or coil 24) is arranged at a bottom (11) of the stator part (2) only in the region of the geometrical surface area of the drive plate (4) and said bottom (11) has a recess (13) in the region of the geometrical surface area of the mirror (5), which recess (13) is dimensioned at least such that a maximum mechanical deflection of the mirror (5) is not limited by the bottom (11), said drive means (stator electrodes 15 or coil 24) applying a force only directly to the drive plate (4) and said force following a periodic function, whose period is tuned to the eigenfrequency of the mirror (5), which differs from the eigenfrequency of the drive plate (4).
Abstract:
Described is a triarylmethane dye of the formula I where R1 and R2 are independently methyl, ethyl or hydroxyethyl, Q is substituted or unsubstituited phenyl or naphthyl and A⊖ is the equivalent of an anion. It does not detach carcinogenic Michler's ketone.
Abstract:
A method of producing an aerogel layer on a substrate is described. A precursor mixture is provided by mixing at least one material selected from the group consisting of silicates, metal alcolates, aluminates and borates with a solvent. The precursor mixture is used to form a lyosol. The precursor mixture or the lyosol formed therefrom is then applied to the substrate wherein a layer of the lyosol is formed on the substrate. A gel is formed from the lyosol by chemical conversion at a temperature at which the solvent is present in a liquid state. At a pressure between 0.5-2.0 torr the ambient temperature is reduced by about 3-70k below the point at which the solvent is converted into a solid state. The solvent is then converted into a gaseous state in a drying chamber while reducing the pressure of the solvent below the triple point and removing solvent from the gel layer.
Abstract:
A process for preparing di- or triarylmethane dyes by oxidation of di- or triarylmethanes in the presence of a diluent and of an oxygen transfer catalyst that contains a complexed heavy metal ion comprises using as oxidizing agent hydrogen peroxide, a hydrogen peroxide donor compound, an organic hydroperoxide or a percarboxylic acid and as the oxygen transfer catalyst a member of the class of the porphyrins, tetraaza[14]annulenes, phthalocyanines or tetraazacyclotetradecanes.
Abstract:
A method for producing a substrate with a copper or a copper-containing coating is disclosed. The method comprises a first step wherein a first precursor, a second precursor and a substrate are provided. The first precursor is a copper complex that contains no fluorine and the second precursor is selected from a ruthenium complex, a nickel complex, a palladium complex or mixtures thereof. In the second step, a layer is deposited at least on partial regions of a surface of the substrate by using the first precursor and the second precursor by means of atomic layer deposition (ALD). The molar ratio of the first precursor:second precursor used for the ALD extends from 90:10 to 99.99:0.01. The obtained layer contains copper and at least one of ruthenium, nickel and palladium. Finally, a reduction is performed step in which a reducing agent acts on the substrate obtained after depositing the copper-containing layer.
Abstract:
A method for controlling a micro-mirror, having the following: generating a first control signal which encodes a tilting motion of the micro-mirror about a first tilt axis, at a first frequency; generating a second control signal which encodes a tilting motion of the micro-mirror about a second tilt axis which is perpendicular to the first tilt axis, at a second frequency which is lower than the first frequency; modulating the second control signal by binary modulation of the second control signal, at the first frequency; and controlling force coupling elements of the micro-mirror, using the modulated second control signal and the first control signal.