Abstract:
Disclosed is an Internet FAX apparatus which, after receiving an Internet address from a certain destination, can communicate with the same destination in later transmission or during communication by connecting to a LAN and switching to an Internet FAX mode requiring no communication charge. An Internet facsimile apparatus on the receiving side transmits its Internet facsimile function and Internet address on an NSF signal in a standard protocol of G3 facsimile transmission and/or transmits its telephone number, Internet facsimile function, and Internet address on TSI and NSS signals in the standard protocol of G3 facsimile communication. The Internet facsimile apparatus registers an Internet facsimile function and Internet address of a partner apparatus as destination data. The Internet facsimile apparatus communicates with the partner apparatus by using the Internet address in the destination data in later transmission or by disconnecting ordinary facsimile mode communication and switching to the Internet FAX mode.
Abstract:
A bonding apparatus including a capillary 40 having a high-frequency coil 50 on its tip end portion and allowing a bonding wire 2 to pass therethrough, a position changing unit for changing the position of the tip of the bonding wire, a gas supply unit for supplying gas into the capillary, and a high-frequency power supply unit for supplying high-frequency power to the high-frequency coil. When the bonding wire is outside a plasma region 52 in the capillary, a microplasma generated in the plasma region is ejected out of the capillary and removes foreign matter or contaminants on the surface of a bonding subject. When the bonding wire is inside the plasma region, the material of the bonding wire is turned into fine particles, and a microplasma 303 containing sputtered fine particles is ejected from the capillary, allowing the material the same as the bonding wire to be deposited on the bonding subject.
Abstract:
A probe is adapted to emit light having at least one wavelength as irradiation light with respect to a measured portion on a biological body in order to measure a biological signal. A light emitting element is configured to emit the light having the at least one wavelength. A light guiding member is provided with: a first end face, being light-reflective and having a first part opposing the light emitting element and a second part surrounding the first part; a second end face, being light-reflective and intersecting the first end face; and a third end face, being light-permeable, opposing the first end face and intersecting the second end face. The light guiding member is configured such that at least part of the light emitted from the light emitting element is reflected by at least one of the first end face and the second end face, and emitted from the third end face as the irradiation light. A light receiving element is configured to receive light reflected by the measured portion. A section shape of the first end face in a direction along an optical axis of the light emitting element is such a shape that at least the second part is coincident with a circumference of an ellipse intersecting a minor axis of the ellipse, and the optical axis of the light emitting element is coincident with the minor axis of the ellipse.
Abstract:
A soft magnetic material includes a plurality of composite magnetic particles. Each of the plurality of composite magnetic particles has a metal magnetic particle including iron, a lower film surrounding the surface of the metal magnetic particle and including a nonferrous metal, and an insulating upper film surrounding the surface of the lower film and including an inorganic compound. The inorganic compound contains at least one element of oxygen and carbon. The nonferrous metal has an affinity with at least one of oxygen and carbon that is larger than such affinity of iron. The nonferrous metal has a diffusion coefficient with respect to at least one of oxygen and carbon that is smaller than such diffusion coefficient of iron. Thus, a soft magnetic material that provides desirable magnetic properties, a method of manufacturing a soft magnetic material, a dust core, and a method of manufacturing a dust core are provided.
Abstract:
A tip end portion and an outer surface of a capillary (or of a wedge tool) used in, for instance, a wire bonding apparatus and method, being covered by a diamond layer with a heating element attached to the outer surface thereof. The inside of the capillary is formed by alumina ceramics, having a tapered hole. The tip end of the capillary is formed by the diamond layer, and a face portion and an inner chamfer portion are formed at the tip end to make a wire heating portion. Heat is transferred from the heating element to the wire heating portion through a heat supply path formed by the diamond layer, and a bonding surface formed by a wire and a pad is heated.
Abstract:
A soft magnetic material has a plurality of composite magnetic particles. Each of the plurality of composite magnetic particles has a metal magnetic particle and an insulating coating covering the metal magnetic particle. Each of the plurality of composite magnetic particles has a ratio of a maximum diameter to an equivalent circle diameter greater than 1.0 and at most 1.3, and a specific surface area of at least 0.10 m2/g.
Abstract:
A method of producing a soft magnetic material includes the steps of preparing soft magnetic powder containing a plurality of soft magnetic particles etching the soft magnetic powder to remove surfaces of the soft magnetic particles and, after the etching step, heat-treating the soft magnetic powder in a finely divided state at a temperature of not less than 400° C. and not more than 900° C. By this method configured as above, desired magnetic characteristics can be obtained.
Abstract:
An object of the present invention is to provide a soft magnetic material exhibiting excellent magnetic characteristics regardless of the frequency to be applied and a dust core produced from the soft magnetic material. The means for solving the invention is a soft magnetic material that comprises metal magnetic particles 10 containing iron and oxygen. The ratio of oxygen contained in metal magnetic particles 10 is more than 0 and less than 0.05% by mass. A dust core produced using such a soft magnetic material has a coercive force of 2.0×102 A/m or less.
Abstract translation:本发明的目的是提供一种软磁性材料,而不管所施加的频率如何,并且由软磁性材料制成的压粉芯是显示出优异的磁特性的。 解决本发明的方法是包含含有铁和氧的金属磁性颗粒10的软磁性材料。 金属磁性粒子10中所含的氧的比例大于0且小于0.05质量%。 使用这种软磁性材料制成的防尘芯的矫顽力为2.0×10 2 A / m以下。
Abstract:
An electric steering lock capable of outputting a signal correctly indicating an operation state of a steering lock mechanism even when the operation voltage of a lock detector decreases. The electric steering lock includes a CPU, a signal hold circuit, and an OR circuit. When the steering lock mechanism unlocks a steering wheel, an unlock sensor provides an H level detection signal to the CPU and the signal hold circuit. In response to the detection signal, the CPU issues a state hold command to the signal hold circuit. In response to the state hold command, the signal hold circuit generates an H level hold signal in correspondence with the detection signal. The OR circuit provides an H level signal to an immobilizer ECU when at least one of the detection signal from the unlock sensor or the hold signal has an H level.
Abstract:
A probe adapted to be used with a pulse oximeter is disclosed. A flexible first housing is adapted to be brought into contact with at least a nail of a finger or a toe of a subject. A flexible second housing is adapted to be brought into contact with at least a top of the finger or the toe. A flexible connecting part connects the first housing and the second housing, and is adapted to cover a tip end of the nail. A light emitting element is provided on one of the first housing and the second housing. A light receiving element is provided on the other one of the first housing and the second housing.