Thermally stable microstructured semi-IPN layer

    公开(公告)号:US10577451B2

    公开(公告)日:2020-03-03

    申请号:US15574176

    申请日:2016-05-13

    Abstract: Thermally stable microstructured layers comprising polyurethane, polyurea and/or polyurethane/urea semi-IPN materials are provided which have microstructured surfaces which are highly durable, erosion resistant, and thermally stable. The microstructured layer comprises a semi-IPN of a polymer network selected from the group consisting of urethane acrylate polymer networks, urethane/urea acrylate polymer networks and urea acrylate polymer networks and a linear or branched polymer that is a thermoplastic polymer selected from the group consisting of thermoplastic polyurethanes, thermoplastic polyurethane/polyureas, thermoplastic polyureas, and combinations thereof. The microstructures are thermally stable at temperatures above the crossover point of the thermoplastic polymer, despite comprising a majority of such thermoplastic material. In another aspect, the present disclosure provides methods of making microstructured layers according to the present disclosure.

    Polyurethane nanocomposites
    15.
    发明授权

    公开(公告)号:US10329390B2

    公开(公告)日:2019-06-25

    申请号:US15367414

    申请日:2016-12-02

    Abstract: Polyurethane nanocomposites are provided which include a polyurethane and surface modified silica nanoparticles covalently bound into the polyurethane. High loadings in excess of 30% may be achieved. In some embodiments, the silica nanoparticles are covalently bound to the polyurethane polymer through a linkage derived from a surface-modifying compound comprising a silane functional group and a polyol segment. In some embodiments the polyurethane nanocomposite may be provided as a tape or film. In addition, precursors for a polyurethane nanocomposites are provided comprising: a first polyol and surface modified silica nanoparticles dispersed within the first polyol. In some embodiments, the silica nanoparticles are surface-modified by reaction with a surface-modifying compound comprising a silane functional group and a polyol segment derived from a second polyol, which may be the same or different from the first polyol.

Patent Agency Ranking