Abstract:
The invention relates to a charged particle beam exposure apparatus configured to expose cut patterns or via patterns on a substrate having a plurality of line patterns 81a arranged on an upper surface of the substrate at a constant pitch by irradiating the substrate with a plurality of charged particle beams B1 to Bn while moving a one-dimensional array beam A1 in an X direction parallel to the line patterns 81a, the one-dimensional array beam A1 being a beam in which the charged particle beams B1 to Bn are arranged in an Y direction orthogonal to the line patterns 81a.
Abstract:
There is provided an electromagnetic lens which includes an electromagnetic coil wound to be rotationally symmetrical about an optical axis of an electron beam, and a pole piece covering the electromagnetic coil, in which: a gap is integrally formed in either one of an inner wall formed at an inner circumference side of the pole piece and a lower end wall formed in an end portion at an emission side of the electron beam, or a boundary portion between the two walls; the inner wall is formed to be thinnest at a portion close to the gap and to gradually become thicker as a distance from the gap increases; and the electromagnetic lens is formed such that a width in a radial direction thereof is more increased as being closer to the gap along with the change of the thickness of the inner wall.
Abstract:
Provided is a three-dimensional laminating and shaping apparatus 100 including a column unit 200 that is configured to output an electron beam EB and deflect the electron beam EB toward the front surface of a powder layer 32, an electron detector 72 that is configured to detect electrons that may be emitted in a predetermined direction from the front surface of the powder layer 32 when the powder layer 32 is irradiated with the electron beam EB, a melting judging unit 410 that is configured to generate a melting signal based on the strength of the detection signal from the electron detector 72, and a deflection controller 420 that is configured to receive the melting signal to determine the condition of the irradiation the electron beam.
Abstract:
To realize a multi-beam formation device that can stably machine a fine pattern using complementary lithography, provided is a device that deforms and deflects a beam, including an aperture layer having a first aperture that deforms and passes a beam incident thereto from a first surface side of the device and a deflection layer that passes and deflects the beam that has been passed by the aperture layer. The deflection layer includes a first electrode section having a first electrode facing a beam passing space in the deflection layer corresponding to the first aperture and a second electrode section having an extending portion that extends toward the beam passing space and is independent from an adjacent layer in the deflection layer and a second electrode facing the first electrode in a manner to sandwich the beam passing space between the first electrode and an end portion of the second electrode.
Abstract:
A multicolumn charged particle beam exposure apparatus includes a plurality of column cells which generate charged particle beams, and the column cell includes a yoke which is made of a magnetic material and generates a magnetic field of a predetermined intensity distribution around an optical axis of the column, and a coil which is wound around the yoke. The coil includes a plurality of divided windings, which are driven by different power sources.
Abstract:
The invention provides an exposure apparatus (100) including a formation module (122) which forms charged particle beams with different irradiation positions on a specimen. The formation module (122) includes: a particle source (20) which emits the charged particle beams from an emission region (21) in which a width in a longitudinal direction is different from and a width in a lateral direction orthogonal to the longitudinal direction; an aperture array device (60) provided with openings (62) arranged in an illuminated region (61) in which a width in a longitudinal direction is different from a width in a lateral direction orthogonal to the longitudinal direction; illumination lenses (30, 50) provided between the particle source (20) and the aperture array device (60); and a beam cross-section deformation device (40) which is provided between the particle source (20) and the aperture array device (60), and deforms a cross-sectional shape of the charged particle beams into an anisotropic shape by an action of a magnetic field or an electric field.
Abstract:
There is provided a charged particle beam exposure apparatus which turns an array beam including a plurality of charged particle beams, being arranged side by side in a line in a direction intersecting line patterns, on and off at predetermined blanking timing, and thus performs irradiation when irradiated positions of the charged particle beams arrive at pattern positions. The charged particle beam exposure apparatus improves data processing control by segmenting a sample provided with line patterns into a plurality of exposure ranges each at a predetermined length in a direction of movement, and performing on-off control of the beams based on a point of time when the array beam passes on a reference position set in the exposure region.
Abstract:
There is provided an electromagnetic lens which includes an electromagnetic coil wound to be rotationally symmetrical about an optical axis of an electron beam, and a pole piece covering the electromagnetic coil, in which: a gap is integrally formed in either one of an inner wall formed at an inner circumference side of the pole piece and a lower end wall formed in an end portion at an emission side of the electron beam, or a boundary portion between the two walls; the inner wall is formed to be thinnest at a portion close to the gap and to gradually become thicker as a distance from the gap increases; and the electromagnetic lens is formed such that a width in a radial direction thereof is more increased as being closer to the gap along with the change of the thickness of the inner wall.