Abstract:
A method for data storage includes, in a first programming phase, storing first data in a group of analog memory cells by programming the memory cells in the group to a set of initial programming levels. In a second programming phase that is subsequent to the first programming phase, second data is stored in the group by: identifying the memory cells in the group that were programmed in the first programming phase to respective levels in a predefined partial subset of the initial programming levels; and programming only the identified memory cells with the second data, so as to set at least some of the identified memory cells to one or more additional programming levels that are different from the initial programming levels.
Abstract:
A method for data storage includes accepting data for storage in a memory including multiple analog memory cells. For each memory cell, a respective set of nominal analog values is assigned for representing data values to be stored in the memory cell, by choosing the nominal analog values for a given memory cell in a respective range that depends on interference between the given memory cell and at least one other memory cell in the memory. The data is stored in each memory cell using the respective selected set of the nominal analog values.
Abstract:
A method for data storage includes, in a memory that includes multiple memory blocks, specifying at a first time a first over-provisioning overhead, and storing data in the memory while retaining in the memory blocks memory areas, which do not hold valid data and whose aggregated size is at least commensurate with the specified first over-provisioning overhead. Portions of the data from one or more previously-programmed memory blocks containing one or more of the retained memory areas are compacted. At a second time subsequent to the first time, a second over-provisioning overhead, different from the first over-provisioning overhead, is specified, and data storage and data portion compaction is continued while complying with the second over-provisioning overhead.
Abstract:
A method for data storage includes storing data in a memory that includes one or more memory units, each memory unit including memory blocks. The stored data is compacted by copying at least a portion of the data from a first memory block to a second memory block, and subsequently erasing the first memory block. Upon detecting a failure in the second memory block after copying the portion of the data and before erasure of the first memory block, the portion of the data is recovered by reading the portion from the first memory block.
Abstract:
A method for operating a memory (28) includes storing data in a group of analog memory cells (32) of the memory as respective first voltage levels. After storing the data, second voltage levels are read from the respective analog memory cells. The second voltage levels are affected by cross-coupling interference causing the second voltage levels to differ from the respective first voltage levels. Cross-coupling coefficients, which quantify the cross-coupling interference among the analog memory cells, are estimated by processing the second voltage levels. The data stored in the group of analog memory cells is reconstructed from the read second voltage levels using the estimated cross-coupling coefficients.
Abstract:
A method for data storage includes accepting data for storage in a memory including multiple analog memory cells. For each memory cell, a respective set of nominal analog values is assigned for representing data values to be stored in the memory cell, by choosing the nominal analog values for a given memory cell in a respective range that depends on interference between the given memory cell and at least one other memory cell in the memory. The data is stored in each memory cell using the respective selected set of the nominal analog values.
Abstract:
A method for data storage includes, in a memory that includes multiple memory blocks, specifying at a first time a first over-provisioning overhead, and storing data in the memory while retaining in the memory blocks memory areas, which do not hold valid data and whose aggregated size is at least commensurate with the specified first over-provisioning overhead. Portions of the data from one or more previously-programmed memory blocks containing one or more of the retained memory areas are compacted. At a second time subsequent to the first time, a second over-provisioning overhead, different from the first over-provisioning overhead, is specified, and data storage and data portion compaction is continued while complying with the second over-provisioning overhead.
Abstract:
A method for operating a memory includes storing data in a plurality of analog memory cells that are fabricated on a first semiconductor die by writing input storage values to a group of the analog memory cells. After storing the data, multiple output storage values are read from each of the analog memory cells in the group using respective, different threshold sets of read thresholds, thus providing multiple output sets of the output storage values corresponding respectively to the threshold sets. The multiple output sets of the output storage values are preprocessed by circuitry that is fabricated on the first semiconductor die, to produce preprocessed data. The preprocessed data is provided to a memory controller, which is fabricated on a second semiconductor die that is different from the first semiconductor die. so as to enable the memory controller to reconstruct the data responsively to the preprocessed data.
Abstract:
A method for operating a memory (28) that includes a plurality of analog memory cells (32) includes storing data in the memory by writing first storage values to the cells. Second storage values are read from the cells, and a Cumulative Distribution Function (CDF) of the second storage values is estimated. The estimated CDF is processed so as to compute one or more thresholds. A memory access operation is performed on the cells using the one or more thresholds.
Abstract:
A technique for determining a presence of a person in a room may include an electronic device transmitting an electromagnetic wireless signal of a first sensor. The technique may include receiving an electromagnetic return signal from the electromagnetic wireless signal. The technique may include detecting a potential target in the room based on the electromagnetic return signal. The technique may include determining that the potential target is in the room using a second sensor. Responsive to determining the potential target is in the room, the technique may include saving a training signature of the electromagnetic return signal for training a machine learning model. This technique can be repeated to obtain a set of training signatures corresponding to potential targets. The technique may include training, using the set of training signatures, the machine learning model to detect when a target is in the room using the first sensor.