Abstract:
A method for facilitating in-device coexistence between wireless communication technologies on a wireless communication device is provided. The method can include transmitting data traffic from the wireless communication device via an aggressor wireless communication technology; determining occurrence of an in-device interference condition resulting from transmission of the data traffic via the aggressor wireless communication technology interfering with concurrent data reception by the wireless communication device via a victim wireless communication technology; and reducing a bit rate of the data traffic transmitted via the aggressor wireless communication technology in response to the in-device interference condition.
Abstract:
In order to facilitate communication between an electronic device and another electronic device, the electronic device determines communication-quality metrics for a first connection in a wireless network based on received information from the other electronic device. Then, the electronic device calculates an overall communication-quality indicator for the first connection based on at least some of the communication-quality metrics. Moreover, the electronic device dynamically adapts the communication with the other electronic device based on the overall communication-quality indicator. For example, the electronic device may establish a second connection in a cellular-telephone network and may use the second connection to communicate with the other electronic device. Alternatively, the electronic device may provide the overall communication-quality indicator to the other electronic device and may at least partially transition the communication from the second connection in the cellular-telephone network to the first connection in the wireless network.
Abstract:
A method for redundant transmission of real time data is provided. The method can include an edge node in a wireless network sending a first RTP packet including a first real time data frame to a second edge node. The method can further include the edge node determining that a radio link condition is sufficient to support redundant transmission of real time data to the second edge node. The method can additionally include the edge node, in response to determining that the radio link condition is sufficient to support redundant transmission of real time data, bundling the first real time data frame with a next sequential real time data frame that has not been previously sent to the second edge node in a second RTP packet at a PDCP layer of the edge node; and sending the second RTP packet to the second edge node.
Abstract:
This disclosure relates to techniques for adaptive C-DRX Management. A wireless device and a cellular base station may establish a cellular link. According to some embodiments, the base station may monitor upcoming traffic with the wireless device. Based at least in part on the upcoming traffic for the wireless device, the base station may provide a command indicating to the wireless device to enter C-DRX. The command may further indicate to the wireless device a number of C-DRX cycles through which to remain in a low power state.
Abstract:
The disclosure describes procedures for allocating network resources for a mobile device communicating within a Long Term Evolution (LTE) network. The mobile device can be configured to decode a physical downlink shared channel (PDSCH), acquire first and second physical downlink control channel (PDCCH) decode indicators from a payload of the same PDSCH communication, decode a PDCCH for downlink control information (DCI) associated with a first application data type based on the first PDCCH decode indicator a second application data type based on the second PDCCH decode indicator. The first PDCCH decode indicator can identify an upcoming LTE subframe where the mobile device is required to decode the PDCCH for DCI associated VoLTE resource assignments and the second PDCCH decode indicator can identify an upcoming LTE subframe where the mobile device is required to decode the PDCCH for DCI associated with high bandwidth best effort (BE) data resource assignments.
Abstract:
Methods and apparatus to mitigate interference among multiple wireless subsystems of a wireless communication device are described. A host processor obtains configurations for a plurality of wireless subsystems and evaluates whether potential or actual coexistence interference exists between two or more of the wireless subsystems. The host processor provides configuration information and link quality reporting parameters to and obtains link quality reports from at least two wireless subsystems. When link quality for at least one wireless subsystem fails a set of link quality conditions, the host processor adjusts data requirements for applications that communicate through one or more of the wireless subsystems and/or adjusts radio frequency operating conditions for one or more of the wireless subsystems to mitigate interference among the wireless subsystems.
Abstract:
In order to facilitate communication between an electronic device and another electronic device, the electronic device determines communication-quality metrics for a first connection in a wireless network based on received information from the other electronic device. Then, the electronic device calculates an overall communication-quality indicator for the first connection based on at least some of the communication-quality metrics. Moreover, the electronic device dynamically adapts the communication with the other electronic device based on the overall communication-quality indicator. For example, the electronic device may establish a second connection in a cellular-telephone network and may use the second connection to communicate with the other electronic device. Alternatively, the electronic device may provide the overall communication-quality indicator to the other electronic device and may at least partially transition the communication from the second connection in the cellular-telephone network to the first connection in the wireless network.
Abstract:
In an example method, a mobile device obtains sample data generated by one or more sensors over a period of time, where the one or more sensors are worn by a user. The mobile device determines that the user has fallen based on the sample data, and determines, based on the sample data, a severity of an injury suffered by the user. The mobile device generates one or more notifications based on the determination that the user has fallen and the determined severity of the injury.
Abstract:
Disclosed embodiments include wearable devices and techniques for detecting cardio machine activities, estimating user direction of travel, and monitoring performance during cardio machine activities. By accurately and promptly detecting cardio machine activities and automatically distinguishing between activities performed on different types of cardio machines, the disclosure enables wearable devices to accurately calculate user performance information when users forget to start and/or stop recording activities on a wide variety of cardio machines. In various embodiments, cardio machine activity detection techniques may use magnetic field data from a magnetic field sensor to improve the accuracy of orientation data and device heading measurements used to detect the end of a cardio machine activity.
Abstract:
In an example method, a mobile device obtains sample data generated by one or more sensors over a period of time, where the one or more sensors are worn by a user. The mobile device determines that the user has fallen based on the sample data, and determines, based on the sample data, a severity of an injury suffered by the user. The mobile device generates one or more notifications based on the determination that the user has fallen and the determined severity of the injury.