Abstract:
A system and method are provided for determining deformation of a patterning device and/or shift position of the patterning device relative. The system includes a first sensing sub-system that measures respective positions of a plurality of reference marks on the patterning device, and a second sensing sub-system that measures positions of the edge of the patterning device relative to the support. The system further includes a controller to determine an absolute position of the patterned portion and change in the absolute position based on measured respective positions of marks on the patterning device, determine a change in a relative position of the edge of the patterned device based on the measured edge positions, and estimate a change in a position of the patterning device relative to the support and a change in a pattern distortion of the patterned portion of the patterning device over a time period.
Abstract:
A system for controlling temperature of a patterning device in a lithographic apparatus is discussed. The system includes a patterning device support configured to support a patterning device and a reticle cooling system configured to provide substantially uniform temperature distribution across the patterning device. The reticle cooling system includes a first and second array of gas inlets configured to provide a first and second gas flow along a first and second direction across a surface of the patterning device, respectively, where first and second directions are opposite to each other. The reticle cooling system further includes a switching control system configured to control operation of the first and second arrays of gas inlets.
Abstract:
A system (300) for supporting an exchangeable object (302) can include a movable structure (304) and an object holder (306) configured to be movable relative to the movable structure. The object holder can be configured to hold the exchangeable object. The system can also include a first actuator assembly (308) and second actuator assembly (316). The first actuator assembly can be configured to apply a force to the object holder to translate the exchangeable object generally along a plane. The second actuator assembly can be configured to apply a bending moment to the object holder. The exchangeable object can be a patterning device of a lithographic apparatus.
Abstract:
A lithographic apparatus has a support structure configured to support a patterning device, the patterning device serving to pattern a radiation beam according to a desired pattern and having a planar main surface through which the radiation beam passes; an outlet opening configured to direct a flow of a gas onto the patterning device; and an inlet opening configured to extract the gas which has exited the outlet opening, wherein the outlet opening and inlet opening are in a facing surface facing the planar main surface of the patterning device.
Abstract:
A patterning device support for controlling a temperature of a patterning device can include a movable component. The movable component can include a gas inlet for supplying a gas flow across a surface of the patterning device and a gas outlet for extracting the gas flow. The patterning device support can also include a gas flow generator coupled to a duct, for recirculating the gas flow from the gas outlet to the gas inlet.
Abstract:
A patterning device support for controlling a temperature of a patterning device can include a movable component. The movable component can include a gas inlet for supplying a gas flow across a surface of the patterning device and a gas outlet for extracting the gas flow. The patterning device support can also include a gas flow generator coupled to a duct, for recirculating the gas flow from the gas outlet to the gas inlet.
Abstract:
A lithographic apparatus has a support structure configured to support a patterning device, the patterning device serving to pattern a radiation beam according to a desired pattern and having a planar main surface through which the radiation beam passes; an outlet opening configured to direct a flow of a gas onto the patterning device; and an inlet opening configured to extract the gas which has exited the outlet opening, wherein the outlet opening and inlet opening are in a facing surface facing the planar main surface of the patterning device.
Abstract:
A lithographic apparatus can include a component and a positioning system operatively coupled and configured to move the component along a first axis. The positioning system can be configured to measure a position of the component along a second axis or a third axis. The positioning system can also be configured to control movement of the component so as to compensate for an effect of eigenmode coupling between the movement of the component along the first axis and the measured position of the component along the second axis or the third axis. In some embodiments, the component is a reticle stage or a wafer stage.
Abstract:
A system and method that bends a reticle and senses a curvature of a bent reticle in real-time. The system includes movable reticle stage, reticle vacuum clamps, sensor systems, and reticle bender. The reticle bender comprises piezo actuators. The sensor systems comprises measurement targets and corresponding sensors. The sensors are attached to the movable reticle stage and the measurement targets are attached to the reticle clamps, the reticle bender, or on reticle surfaces. The system is configured to determine a width of the reticle or distance between measurement targets at opposing ends of the reticle, measure a first rotational angle at a first end of the reticle, and measure a second local rotational angle at a second end of the reticle that is opposite to the first end. Based on the width or distance and the first and second angles, a field curvature of the reticle is determined.
Abstract:
A system and method that bends a reticle and senses a curvature of a bent reticle in real-time. The system includes movable reticle stage, reticle vacuum clamps, sensor systems, and reticle bender. The reticle bender comprises piezo actuators. The sensor systems comprises measurement targets and corresponding sensors. The sensors are attached to the movable reticle stage and the measurement targets are attached to the reticle clamps, the reticle bender, or on reticle surfaces. The system is configured to determine a width of the reticle or distance between measurement targets at opposing ends of the reticle, measure a first rotational angle at a first end of the reticle, and measure a second local rotational angle at a second end of the reticle that is opposite to the first end. Based on the width or distance and the first and second angles, a field curvature of the reticle is determined.