Abstract:
The present disclosure relates to a logic control circuit including a first inverter and a voltage limiter. The first inverter is connected to a first input voltage. The first inverter includes a first transistor having a first terminal and a second terminal. The second terminal of the first transistor is connected to a ground. The voltage limiter includes a second transistor. The second transistor has a gate connected to a ground, a source connected to the first terminal of the first transistor and a drain connected to a second input voltage.
Abstract:
The present disclosure relates to a semiconductor device package and a manufacturing method thereof. The semiconductor device package includes a carrier, at least one electronic component, a first magnetic layer and a second magnetic layer. The carrier has a top surface on which the electronic component is disposed. The first magnetic layer is disposed on the top surface of the carrier and encapsulates the electronic component. The second magnetic layer is disposed on the first magnetic layer and covers a top surface and a lateral surface of the first magnetic layer. A permeability of the first magnetic layer is less than a permeability of the second magnetic layer.
Abstract:
A radio frequency (RF) amplifier is disclosed. The RF power amplifier includes a bias circuit, an output-stage circuit and a RF compensation circuit. When a first system voltage is larger than a first voltage threshold value, the bias circuit generates a first current rising slightly. When first system voltage is larger than second voltage threshold value, the RF compensation circuit receives a second circuit rising slightly transmitted from the bias circuit. When the first system voltage is in an operation voltage range, the first current is larger than the second circuit so as to a quiescent operating current of the RF power amplifier is independent of change of the first system voltage. When the first system voltage is larger than a third voltage threshold value, the first current is equal to the second current so as to have the bias current being a zero current to protect the RF power amplifier from over-voltage.
Abstract:
A power amplifier circuit includes a first transistor, a second transistor and a bias circuit. The first transistor has a base configured to receive a first signal. The second transistor has an emitter connecting to a collector of the first transistor and a collector configured to output a second signal. The bias circuit is coupled to the first transistor and the second transistor. The bias circuit is configured to provide a direct current (DC) voltage at the collector of the second transistor about twice a DC voltage at the collector of the first transistor. The bias circuit is configured to provide an alternating current (AC) or radio frequency (RF) voltage at the collector of the second transistor about twice an AC or RF voltage at the collector of the first transistor.
Abstract:
The present disclosure relates to a power amplifier circuit. The power amplifier circuit includes a voltage-controlled current source and a current mirror. The voltage-controlled current source is configured to receive a first voltage and to generate a first current. The current mirror is connected to the voltage-controlled current source and to generate a second current in response to the first current. The second current continuously changes from 0 mA to about 120 mA as the first voltage continuously changes from 0 V to about 1 V.
Abstract:
A low noise amplifier is disclosed. The low noise amplifier comprises a current mirror circuit, a bias circuit, a cascode amplifying circuit and a power gain compensating circuit. The current mirror circuit is used for providing a first current and third current. The bias circuit is used for receiving a first current and third current and outputting a first bias voltage and a second bias voltage according to the first current and third current. The cascode amplifying circuit respectively receives the first bias voltage and the second bias voltage, and accordingly to work at an operation bias point. The power gain compensating circuit is used for receiving a RF output signal and accordingly outputs a gain compensating signal to the current mirror circuit so as to dynamically adjust current value of the first current and third current and further to compensates power gain of the low noise amplifier in order to increase 1 dB gain compression point (P1 dB).
Abstract:
A radio frequency (RF) power amplifier is disclosed. The RF power amplifier includes a bias circuit, an output stage circuit and dynamic bias controlling circuit. The bias circuit receives a first system voltage and provides a working voltage accordingly. The output stage circuit receives the working voltage so as to work at an operation bias point. The dynamic bias controlling circuit detects a RF input signal and outputs a compensation voltage to the bias circuit according to variation of the RF input signal, wherein the dynamic bias controlling circuit is an open loop configuration. When an input power of the RF input signal increases and makes the working voltage decreases so as to shift the operation bias point, the bias circuit adjusts the working voltage upward so as to recover or enhance the operation bias point according to the compensation voltage received.
Abstract:
The RF stacked power amplifier comprises a voltage-dividing circuit, a negative feedback bias circuit, a current source circuit and a stacked amplifying circuit. The voltage-dividing circuit receives a system voltage and divides the system voltage for outputting a first reference partial voltage and a second reference partial voltage. The negative feedback bias circuit receives a negative feedback reference voltage and correspondingly outputs a second bias reference voltage according to a result of comparing the second reference partial voltage and the negative feedback reference voltage. The current source circuit determines a bias reference current according to the first reference partial voltage. The stacked amplifying circuit outputs the negative feedback reference voltage and determines an operation bias point according to a first bias reference voltage and the bias reference current. The RF stacked power amplifier makes the voltage-drop and the power consumption of each transistor equal via the voltage-dividing circuit.
Abstract:
A bandgap reference voltage generating circuit for providing a reference voltage is disclosed. The bandgap reference voltage generating circuit includes four-terminal current source circuit, a regulator circuit and a temperature-compensating circuit. The four-terminal current source circuit outputs a first voltage, a second voltage and a first current which are independent of variation of a first system voltage. The regulator circuit receives the first voltage and the second voltage and when the first system voltage is larger than a threshold voltage value, the regulator circuit outputs the reference voltage independent of variation of the first system voltage via voltage-difference between the first voltage and the second voltage. The temperature-compensating circuit receives the first current and compensates a temperature curve of the reference voltage outputted from the regulator circuit.
Abstract:
A radio frequency (RF) power amplifier with no reference voltage for biasing is disclosed. The RF power amplifier includes a three-terminal current source circuit, a current mirror circuit and an output-stage circuit. The three-terminal current source circuit receives a first system voltage and accordingly outputs a first current and a second current, and a source voltage exists between a first output terminal of the first current and a second output terminal of the second current. The current mirror circuit receives the first current and the second current and accordingly generates a bias current. The output-stage circuit receives the bias current so as to work at an operation point. The RF power amplifier utilizes the source voltage of the three-terminal current source circuit so the first system voltage is between a first voltage and a second voltage, and then the output-stage circuit outputs an output current which does not vary with a deviation of the first system voltage also with temperature compensation.