Abstract:
A semiconductor device package comprises a substrate, a first electronic component, first and second conductive pads, a first frame board, an encapsulation layer, and a conductive layer. The substrate has a first surface and a second surface opposite to the first surface. The first electronic component, the first and second conductive pads, and the first frame board are on the first surface of the substrate. The first frame board surrounds the first electronic component and comprises a first conductive via and a second electronic component. The encapsulation layer encapsulates the first electronic component and the first frame board. The conductive layer is on the first frame board and the encapsulation layer. The first conductive via is electrically connected to the second conductive pad and the conductive layer, and the second electronic component is electrically connected to the first conductive pad.
Abstract:
A tunable radio frequency (RF) coupler and manufacturing method thereof are provided. The tunable RF coupler includes an insulating layer, a first transmission line and a second transmission line. The second transmission line is disposed corresponding to the first transmission line and the insulating layer is disposed between the first transmission line and the second transmission line. The second transmission line includes a plurality of segments separated from each other and arranged along the extension path of the first transmission line. At least one wire is configured to establish an electrical connection between at least two segments, such that the two segments are electrically conductive to each other through the wire.
Abstract:
A semiconductor package device includes: (1) a substrate having a top surface; (2) a passive component disposed on the substrate and having a top surface; (3) an active component disposed on the substrate and having a top surface; and (4) a package body disposed on the substrate, the package body including a first portion covering the active component and the passive component, and a second portion covering the passive component, wherein a top surface of the second portion of the package body is higher than a top surface of the first portion of the package body, and the first portion and the second portion of the package body include different materials.
Abstract:
The present disclosure relates to a semiconductor device package. The semiconductor device package includes a substrate, a semiconductor device, a plurality of electronic components, a first package body, a patterned conductive layer and a feeding element. The semiconductor device and the plurality of electronic components are disposed on the substrate. The first package body covers the semiconductor device but exposes the plurality of electronic components. The patterned conductive layer is formed on the first package body. The feeding element electrically connects the patterned conductive layer to the plurality of electronic components.
Abstract:
The present disclosure relates to a semiconductor device package and a manufacturing method thereof. The semiconductor device package includes a carrier, at least one electronic component, a first magnetic layer and a second magnetic layer. The carrier has a top surface on which the electronic component is disposed. The first magnetic layer is disposed on the top surface of the carrier and encapsulates the electronic component. The second magnetic layer is disposed on the first magnetic layer and covers a top surface and a lateral surface of the first magnetic layer. A permeability of the first magnetic layer is less than a permeability of the second magnetic layer.
Abstract:
The present disclosure relates to a semiconductor device package and a manufacturing method thereof. The semiconductor device package includes a carrier, at least one electronic component, a first magnetic layer and a second magnetic layer. The carrier has a top surface on which the electronic component is disposed. The first magnetic layer is disposed on the top surface of the carrier and encapsulates the electronic component. The second magnetic layer is disposed on the first magnetic layer and covers a top surface and a lateral surface of the first magnetic layer. A permeability of the first magnetic layer is less than a permeability of the second magnetic layer.
Abstract:
A semiconductor package device includes a substrate, a passive component, an active component and a package body. The passive component is disposed on the substrate. The active component is disposed on the substrate. The package body is disposed on the substrate. The package body includes a first portion covering the active component and the passive component, and a second portion covering the passive component. A top surface of the second portion of the package body is higher than a top surface of the first portion of the package body.
Abstract:
A semiconductor device package includes a semiconductor device, a conductive bump, a first encapsulant and a second encapsulant. The semiconductor device has a first surface, a second surface and a lateral surface. The second surface is opposite to the first surface. The lateral surface extends between the first surface and the second surface. The semiconductor device comprises a conductive pad adjacent to the first surface of the semiconductor device. The conductive bump is electrically connected to the conductive pad. The first encapsulant covers the first surface of the semiconductor device and a first portion of the lateral surface of the semiconductor device, and surrounds the conductive bump. The second encapsulant covers the second surface of the semiconductor device and a second portion of the lateral surface of the semiconductor device.
Abstract:
A semiconductor package includes a substrate, a set of electrical components, a stud, a tapering electrical interconnection and a package body. The electrical components are disposed on a top surface of the substrate. A bottom surface of the stud is disposed on the top surface of the substrate. A bottom surface of the electrical interconnection is disposed at a top surface of the stud. A width of the stud is greater than or equal to a width of the bottom surface of the electrical interconnection. The package body is disposed on the top surface of the substrate, and encapsulates the electrical components, the stud and a portion of the electrical interconnection. The package body exposes a top surface of the electrical interconnection.
Abstract:
A tunable radio frequency (RF) coupler and manufacturing method thereof are provided. The tunable RF coupler includes an insulating layer, a first transmission line and a second transmission line. The second transmission line is disposed corresponding to the first transmission line and the insulating layer is disposed between the first transmission line and the second transmission line. The second transmission line includes a plurality of segments separated from each other and arranged along the extension path of the first transmission line. At least one wire is configured to establish an electrical connection between at least two segments, such that the two segments are electrically conductive to each other through the wire.