摘要:
A silicon carbide semiconductor device including an SBD measuring a temperature of a silicon carbide semiconductor element. The silicon carbide semiconductor device includes a MOSFET formed on a silicon carbide epitaxial substrate, and an SBD section measuring a temperature of the MOSFET. The SBD section includes an n-type cathode region in a surface portion of a silicon carbide drift layer; an anode titanium electrode formed on the cathode region, the electrode serving as a Schottky electrode; an n-type cathode contact region of a higher concentration than that of the cathode region, formed in the surface portion of the silicon carbide drift layer to make contact with the cathode region; a cathode ohmic electrode formed on the cathode contact region; and a first p-type well region formed within the silicon carbide drift layer to surround peripheries of the cathode region and the cathode contact region.
摘要:
In a high speed switching power semiconductor device having a sense pad, a high voltage is generated during switching operations in well regions under the sense pad due to a displacement current flowing through its flow path with a resistance, whereby the power semiconductor device sometimes breaks down by dielectric breakdown of a thin insulating film such as a gate insulating film. In a power semiconductor device according to the invention, sense-pad well contact holes are provided on well regions positioned under the sense pad and penetrate a field insulating film thicker than the gate insulating film to connect to the source pad, thereby improving reliability.
摘要:
A trench-gate type semiconductor device that can prevent breakdown of a gate insulating film caused by a displacement current flowing into a protective diffusion layer at a portion of a trench underlying a gate electrode at a turn-off time and simultaneously improves a current density by narrowing a cell pitch. The semiconductor device includes a gate electrode embedded into a trench penetrating a base region. The gate electrode is disposed into a lattice shape in a planar view, and a protective diffusion layer is formed in a drift layer at the portion underlying thereof. At least one of blocks divided by the gate electrode is a protective contact region on which the trench is entirely formed. A protective contact for connecting the protective diffusion layer at a bottom portion of the trench and a source electrode is disposed on the protective contact region.
摘要:
A source region of a MOSFET includes: a source contact region connected to a source pad; a source extension region adjacent to a channel region in a well region; and a source resistance control region arranged between the source extension region and the source contact region. The source resistance control region is different in an impurity concentration from the source extension region and the source contact region. These three regions are connected in series between the source pad and the channel region in the well region.
摘要:
A trench-gate type semiconductor device that can prevent breakdown of a gate insulating film caused by a displacement current flowing into a protective diffusion layer at a portion of a trench underlying a gate electrode at a turn-off time and simultaneously improves a current density by narrowing a cell pitch. The semiconductor device includes a gate electrode embedded into a trench penetrating a base region. The gate electrode is disposed into a lattice shape in a planar view, and a protective diffusion layer is formed in a drift layer at the portion underlying thereof. At least one of blocks divided by the gate electrode is a protective contact region on which the trench is entirely formed. A protective contact for connecting the protective diffusion layer at a bottom portion of the trench and a source electrode is disposed on the protective contact region.
摘要:
A source region of a MOSFET includes: a source contact region connected to a source pad; a source extension region adjacent to a channel region in a well region; and a source resistance control region arranged between the source extension region and the source contact region. The source resistance control region is different in an impurity concentration from the source extension region and the source contact region. These three regions are connected in series between the source pad and the channel region in the well region.
摘要:
In a high speed switching power semiconductor device having a sense pad, a high voltage is generated during switching operations in well regions under the sense pad due to a displacement current flowing through its flow path with a resistance, whereby the power semiconductor device sometimes breaks down by dielectric breakdown of a thin insulating film such as a gate insulating film. In a power semiconductor device according to the invention, sense-pad well contact holes are provided on well regions positioned under the sense pad and penetrate a field insulating film thicker than the gate insulating film to connect to the source pad, thereby improving reliability.
摘要:
A power semiconductor device includes a second conductive type sense outer-peripheral well formed to surround a plurality of sense wells on the surface of a drift layer, a first conductive type main-cell source region selectively formed on the surface of the main cell well, a first conductive type sense source region selectively formed on the surface of the sense well, a first conductive type capacitor lower electrode region selectively formed on the surface of the sense outer-peripheral well, a gate insulation film formed on the channel regions and on the sense outer-peripheral well, a gate electrode formed on the gate insulation film, and a sense pad electrically connected to the sense well and the sense source region as well as on the sense outer-peripheral well and the capacitor lower electrode region.
摘要:
A power semiconductor device includes a second conductive type sense outer-peripheral well formed to surround a plurality of sense wells on the surface of a drift layer, a first conductive type main-cell source region selectively formed on the surface of the main cell well, a first conductive type sense source region selectively formed on the surface of the sense well, a first conductive type capacitor lower electrode region selectively formed on the surface of the sense outer-peripheral well, a gate insulation film formed on the channel regions and on the sense outer-peripheral well, a gate electrode formed on the gate insulation film, and a sense pad electrically connected to the sense well and the sense source region as well as on the sense outer-peripheral well and the capacitor lower electrode region.
摘要:
A semiconductor device includes an active region formed in an upper layer portion of a semiconductor layer of a first conductivity type, and a plurality of electric field relaxation layers disposed from an edge of the active region toward the outside so as to surround the active region. The plurality of electric field relaxation layers include a plurality of first electric field relaxation layers and a plurality of second electric field relaxation layers alternately disposed adjacent to each other, the first electric field relaxation layer and the second electric field relaxation layer adjacent to each other forming a set. Impurities of a second conductivity type are implanted to the first electric field relaxation layers at a first surface density, widths of which becoming smaller as apart from the active region. Impurities of the second conductivity type are implanted to the second electric field relaxation layers at a second surface density lower than the first surface density, widths of which becoming larger as apart from the active region.