摘要:
A closed loop power output calibration system for variable power output wireless devices. The wireless device includes a wireless transceiver having a transmit core coupled to a discrete power amplifier. Power detection circuitry formed in the wireless transceiver provides a detected power level of the power amplifier, and a reference power level, both of which are converted to digital signals using existing I and Q signal analog to digital converters in the receiver core. The digital signals are processed to cancel power distortion and temperature effects to provide a resulting power feedback signal. Corrective control signals are generated in response to the power feedback signal relative to a desired power output level. The gain in the transmit core is then adjusted in response to the corrective control signals such that the power amplifier outputs the target output power level.
摘要:
A digital linear transmitter for digital to analog conversion of a radio frequency signal. The transmitter includes a delta sigma (ΔΣ) digital to analog converter (DAC) and a weighted signal digital to analog converter in the transmit path of a wireless device to reduce reliance on relatively large analog components. The ΔΣ DAC converts the lowest significant bits of the oversampled signal while the weighted signal digital to analog converter converts the highest significant bits of the oversampled signal. The transmitter core includes components for providing an oversampled modulated digital signal which is then subjected to first order filtering of the oversampled signal prior to generating a corresponding analog signal. The apparatus and method reduces analog components and increases digital components in transmitter core architecture of wireless RF devices.
摘要:
A closed loop power output calibration system for variable power output wireless devices. The wireless device includes a wireless transceiver having a transmit core coupled to a discrete power amplifier. Power detection circuitry formed in the wireless transceiver provides a detected power level of the power amplifier, and a reference power level, both of which are converted to digital signals using existing I and Q signal analog to digital converters in the receiver core. The digital signals are processed to cancel power distortion and temperature effects to provide a resulting power feedback signal. Corrective control signals are generated in response to the power feedback signal relative to a desired power output level. The gain in the transmit core is then adjusted in response to the corrective control signals such that the power amplifier outputs the target output power level.
摘要:
A digital frequency synthesizer with an automatic calibration system. The digital frequency synthesizer is calibrated by initiating a coarse tuning operation to rapidly reach a preliminary frequency that is proximate to the desired final frequency. A calibration procedure is then executed for adjusting gain in the frequency synthesizer based on the preliminary frequency. This test involves applying one or more test signals to the frequency synthesizer and measuring a signal generated in the frequency synthesizer. This measured signal corresponds to a gain response of the circuit at the preliminary frequency. When the expected gain is known, any difference relative to the gain of the measured signal is used to adjust the gain in a circuit of the frequency synthesizer such that the actual gain substantially matches the expected gain.
摘要:
A digital frequency synthesizer with an automatic calibration system. The digital frequency synthesizer is calibrated by initiating a coarse tuning operation to rapidly reach a preliminary frequency that is proximate to the desired final frequency. A calibration procedure is then executed for adjusting gain in the frequency synthesizer based on the preliminary frequency. This test involves applying one or more test signals to the frequency synthesizer and measuring a signal generated in the frequency synthesizer. This measured signal corresponds to a gain response of the circuit at the preliminary frequency. When the expected gain is known, any difference relative to the gain of the measured signal is used to adjust the gain in a circuit of the frequency synthesizer such that the actual gain substantially matches the expected gain.
摘要:
A passive CMOS differential mixer circuit with a mismatch correction circuit for balancing the electrical characteristics of the two output paths. Once the output paths of the differential circuit are balanced, or matched as closely as possible, second order intermodulation product generation can be inhibited or at least reduced to acceptable levels. The mismatch correction circuit receives a digital offset signal, and generates one or more voltage signals to be selectively applied to the signal paths of the passive differential mixer circuit. The voltage signals can be adjusted back gate bias voltages applied to the bulk terminals of selected transistors to adjust their threshold voltages, or the voltage signals can be adjusted common mode voltages applied directly to a selected signal path. Since the differential mixer circuit is passive, no DC current contribution to noise is generated. The switching transistors of the mixer circuit can be maintained at minimal dimensions to reduce switching signal drive loading, resulting in lower power consumption and higher operating frequencies than if larger switching transistors were used.
摘要:
Methods and apparatus for reducing the amount of leakage in a transmitter are disclosed. In one embodiment, a wireless transmitter is comprises: a divider providing a local oscillation (LO) signal, a plurality of mixers that receive the LO signal and receive a signal to be modulated, a summer coupled to the plurality of mixers, and a plurality of amplifiers serially coupled to the summer. The divider couples to a capacitor, a resistor, and a power supply and the resistor and the capacitor form a pole that attenuates the LO signal present on the power supply.
摘要:
A power supply noise rejection circuit for functional circuits, such as a voltage controlled oscillator (VCO). The power supply noise rejection circuit includes an isolation transistor connected to a voltage supply for providing an output current and voltage substantially free of noise across the full frequency range. A current source, a diode connected reference transistor with resistance means connected between its gate and drain terminals, and a dummy circuit serially connected between the voltage supply and ground generate a bias voltage that is applied to the gate of the isolation transistor. The dummy circuit mimics the DC characteristics of the functional circuit such that the output current tracks with process and temperature variations. The isolation transistor and the reference transistor can have negative threshold voltages, and the circuit can include bleed means for drawing current from the gate of the reference transistor and isolation transistor.
摘要:
A wireless communication device (UST), comprising an input for receiving baseband data (I, Q) in a first signal having a first frequency. The device also comprises circuitry (681, 682) for increasing the first frequency, to form a second signal having a second frequency, in response to a first frequency reference signal (IF2), and the device comprises circuitry (74) for increasing the second frequency, to form a third signal having a third frequency, in response to a second frequency reference signal (LO2). Lastly, the device comprises an antenna (ATU2) for transmitting the baseband data at a final transmission frequency selected as a band within a predetermined set of frequency bands. With reference to the preceding, the first frequency reference signal and the second frequency reference signal are variable and are selected in response to the final transmission frequency which is a particular band selected as a different band at different times and from the predetermined set of frequency bands.
摘要:
A receiver 100 is provided. The receiver 100 comprises an in-phase analog-to-digital converter 112 operable to detect a saturation condition of the in-phase analog-to-digital converter 112 and to adjust the amplitude of a in-phase signal processed by the in-phase analog-to-digital converter 112 to remove the in-phase analog-to-digital converter 112 from the saturation condition and a in-phase digital filter 114 operable to adjust a gain applied to a digital input to the in-phase digital filter 114 from the in-phase analog-to-digital converter 112, the adjustment of the gain substantially inversely proportional to the adjustment of the amplitude of the in-phase signal processed by the in-phase analog-to-digital converter 112. In an embodiment, the receiver 100 also comprises a quadrature path that is substantially similar to the in-phase path, and the in-phase path and the quadrature path comprise a direct conversion receiver. In an embodiment, the in-phase analog-to-digital converter 112 and the in-phase digital filter 114 comprise an intermediate frequency receiver.