Abstract:
A frequency generator is disclosed. The frequency generator is for generating an oscillator clock according to a reference clock, and the frequency generator is used in a frequency hopping system that switches a carrier frequency among a plurality of channels, and the carrier frequency further carries a modulation frequency for data transmission. The frequency generator includes: a frequency hopping and modulation control unit, arranged for generating a current channel according to a channel hopping sequence and a frequency command word (FCW) based on the reference clock, a digital-controlled oscillator (DCO), arranged for to generating the oscillator clock according to an oscillator tuning word (OTW) obtained according to the estimated DCO normalization value. An associated method is also disclosed.
Abstract:
Various methods provide for trimming the gain in a dual-port phase-locked loop (PLL) of a radio transceiver. Use is made of the radio's demodulator to perform modulation accuracy measurements, thereby reducing the cost and complexity of external test equipment.
Abstract:
Performance indicator circuitry is provided for characterizing performance of a phase locked loop (PLL) in a phase path of a polar modulator or polar transmitter that is used to generate a phase modulated RF signal. The PLL includes an oscillator, a high pass path, and a low pass path. The low pass path includes a loop filter. The performance indicator circuitry includes first input circuitry and parameter calculation circuitry. The first input circuitry is configured to input a loop filter signal from the loop filter. The parameter calculation circuitry is configured to compute a value for a performance indicator based on the loop filter signal and control or characterize an aspect of operation of the PLL based on the value.
Abstract:
A transceiver may include a reception (Rx) radio frequency (RF) part configured to process a received signal, a transmission (Tx) RF part configured to process a transmitted signal, and a phase lock loop (PLL) configured to provide a reception frequency to the reception RF part and provide a transmission frequency to the transmission RF part. The PLL may be controlled according to whether the reception RF part or the transmission RF part is on. In addition, a transceiver may include quenching waveform generator (QWGs) to control quenching waveforms of the RF parts corresponding to a plurality of antennas. The quenching waveforms may be generated respectively by VCOs operating at a same frequency. The QWGs may control the VCOs such that the quenching waveforms do not overlap.
Abstract:
A digital frequency synthesizer with an automatic calibration system. The digital frequency synthesizer is calibrated by initiating a coarse tuning operation to rapidly reach a preliminary frequency that is proximate to the desired final frequency. A calibration procedure is then executed for adjusting gain in the frequency synthesizer based on the preliminary frequency. This test involves applying one or more test signals to the frequency synthesizer and measuring a signal generated in the frequency synthesizer. This measured signal corresponds to a gain response of the circuit at the preliminary frequency. When the expected gain is known, any difference relative to the gain of the measured signal is used to adjust the gain in a circuit of the frequency synthesizer such that the actual gain substantially matches the expected gain.
Abstract:
A digital frequency synthesizer with an automatic calibration system. The digital frequency synthesizer is calibrated by initiating a coarse tuning operation to rapidly reach a preliminary frequency that is proximate to the desired final frequency. A calibration procedure is then executed for adjusting gain in the frequency synthesizer based on the preliminary frequency. This test involves applying one or more test signals to the frequency synthesizer and measuring a signal generated in the frequency synthesizer. This measured signal corresponds to a gain response of the circuit at the preliminary frequency. When the expected gain is known, any difference relative to the gain of the measured signal is used to adjust the gain in a circuit of the frequency synthesizer such that the actual gain substantially matches the expected gain.
Abstract:
A phase locked loop (PLL) includes a clock generating circuit, a first phase detecting circuit, a first loop filter, a first VCO, a first mixer and a control circuit. The clock generating circuit generates a first clock signal. The first phase detecting circuit detects a phase difference between an input data signal and a feedback signal and generates a detection output signal according to the phase difference. The first loop filter, coupled to the first phase detecting circuit, generates a first VCO control signal according to the detection output signal. The first mixer, coupled to the first VCO and the clock generating circuit, mixes the output data signal and the first clock signal to generate the feedback data signal. The control circuit, coupled to the clock generating circuit and the first loop filter, for adjusting the first clock signal according to the first VCO control signal to calculate a gain of the first VCO.
Abstract:
An error detecting unit of a phase-locked oscillator evaluates difference between a reference phase error signal output from a phase detector and a phase error signal actually output from the phase detector when a reference frequency modulation signal is output from a voltage-controlled oscillator and further detects a frequency error of the frequency modulation signal from the voltage-controlled oscillator based on a rate of change of the difference. A correction unit of the phase-locked oscillator calculates an average value of the frequency error in a predetermined section of the frequency modulation signal and corrects center frequency of the frequency modulation signal by correcting the average value to be zero, and changes the rate of change of control voltage per control step based on comparison between at least two frequency errors in one cycle of the frequency modulation signal. Thus frequency shift of the frequency modulation signal is corrected.
Abstract:
A PLL circuit for two point modulation includes a first loop filter, a second loop filter, a plurality of switching devices, and a calibration module. The first loop filter filters an output voltage of a charge pump during a gain calibration operation. The second loop filter filters the output voltage of the charge pump during a normal operation. The first loop filter has a bandwidth wider than that of the second loop filter to perform a fast calibration by reducing a lock time. The operation of the first loop filter, the operation of the second loop filter, and the opening of the first loop filter are determined by the switching operations of the switching devices. The calibration module adjusts a gain of analog modulation data based on a frequency error accumulated in the first loop filter after the first loop filter is open during the gain calibration operation.
Abstract:
A multiple path angle modulator includes a closed secondary loop added to a main control loop to automatically adjust a scaling factor related to high frequency gain. The main control loop is configured as a primary path to process the low frequency portion of the angle modulation signal, and the secondary loop is configured as an auxiliary path to process the high frequency portions of the angle modulation signal. The secondary loop senses calibration information and uses it to continuously calibrate the gain within the modulation loop in real time while the system performs its primary operation, thereby eliminating the need for a system shut down or calibration specific timing, such as a lapse time, to balance the modulation paths. Calibration is continuously performed as a background process. The angle modulator is applicable to all modulation type systems.