Abstract:
A method and a device for driver information and for a reaction upon leaving the traffic lane by a vehicle. In this context, the course of at least one edge marking of the traffic lane is ascertained, the track of the vehicle that is to be expected is determined, and as a function of these variables the possible leaving of the traffic lane by the vehicle is ascertained. In the determination of the track of the vehicle, future reactions of the driver are taken into consideration.
Abstract:
The invention relates to a method for operating a drive device (1) of a motor vehicle, said drive device (1) comprising at least one combustion engine (3) and at least one electric machine (9), as well as a dual clutch transmission (4) which can be functionally connected to the combustion engine (3) and which comprises a first sub-transmission (5), a first clutch (6) being associated therewith, and a second sub-transmission (7), a second clutch (8) and the electric machine (9) being associated therewith. In a purely electrical driving operation, the electric machine (9) is operated in a motorised manner, a driving gear is engaged in the second sub-transmission (7), and both clutches (6, 8) are disengaged. According to the invention, in order to start the combustion engine (3) during the electric driving operation, the second clutch (8) is engaged so as to drive the combustion engine (3) by means of the electric machine (9), a gear is engaged in the first sub-transmission (5), said gear having a lower gear ratio than the engaged driving gear of the second sub-transmission (7), the first clutch (6) is brought into a slip position and the second sub-transmission (7) is subsequently brought into a neutral position, the rotational speed of the electric machine (9) is increased at least to a starting rotational speed for the combustion engine (3) with the slip of the first clutch (6) being adjusted to maintain a forward torque of the motor vehicle, and the combustion engine (3) is started once its starting rotational speed has been reached. In addition, the invention relates to a device for operating a drive device of a motor vehicle.
Abstract:
A method and a device are proposed for driver information and for a reaction upon the leaving of the traffic lane by the vehicle. The driver warning and the driver intervention are a function, in this context, of the driving situation, especially of the type of an edge marking of the traffic lane.
Abstract:
A method and a device for course prediction in motor vehicles, which have a position-finding system for objects situated in front of the vehicle, where a function describing the path of the roadway is calculated on the basis of measured distance and angular data, in that several fixed targets are identified and tracked and supplied (subjected) to a statistical evaluation, a plausibility criterion being that at least one parameter of the functions, which describe these roadway paths, has a significant frequency maximum at the value which corresponds to the real roadway path. At the beginning of the evaluation, the frequency distribution for all parameters is set to a predefined frequency value, and the frequency values of the parameters are reduced or increased by a predefined numerical value as a function of the position of fixed targets or vehicles.
Abstract:
A method for driving a hybrid vehicle during a load reversal includes: the application of a first torque on a first hybrid vehicle axle during an acceleration reversal; and the application of a second torque on a second hybrid vehicle axle during the acceleration reversal, a direction of action of the second torque being opposite to a direction of action of the first torque.
Abstract:
A method for detecting an optical structure from image sequences of an image recording system. An optical flow field is derived from the image sequences of the image recording system. The vectors of the optical flow field are broken down into components by projection onto a coordinate system of the image recorded by the image recording system. At least one component of the flow vectors is analyzed for a change of direction. The image elements containing a change of direction of a vector component are connected to form a curve.
Abstract:
A method for determining the beginning of a start phase of an internal combustion engine in a hybrid vehicle, in which a second drive unit drives the hybrid vehicle, the internal combustion engine being started upon reaching a certain drive torque of the second drive unit. In order to always be able to achieve the maximum solely electric driving range of the hybrid vehicle using the second drive unit and simultaneously improve the driving comfort of the hybrid vehicle by optimizing the internal combustion engine start triggering, the internal combustion engine is started when a predicted drive torque of the second drive unit is less than or equal to the drive torque, as instantaneously measured and increased by a torque reserve, of the second drive unit.
Abstract:
A method is described for operating a vehicle, in particular a hybrid vehicle, in which at least one of the axles of the vehicle is driven by a drive unit causing the vehicle to be accelerated at a predefined setpoint torque, in that a partial drive torque is transferred to at least one axle and the wheels coupled to it. For the setpoint torque requested by the driver to be converted into the corresponding acceleration of the vehicle, the partial drive torque of the steered axle and/or the unsteered axle is corrected while negotiating a curve in such a way that the vehicle is accelerated at the predefined setpoint torque.
Abstract:
A method and a device for driver information, according to which a warning is produced on the basis of the lane information which indicates crossing of the lane edge. Upon branching of a roadway line, the particular outer lines are used as lane edge markings as the basis for the lane departure warning.
Abstract:
A method for travel course prediction in a motor vehicle having a position finding system for objects situated ahead of the vehicle is provided. In accordance with the method, a function describing the shape of the roadside is calculated on the basis of measured distance data and angle data for stationary roadside targets, wherein multiple stationary targets are identified and tracked. The path of the road is estimated for various subsets of the set of tracked stationary targets, under the assumption that these stationary targets are situated along the roadside, and roadside targets are differentiated from interfering objects on the basis of the plausibility of the resulting possible shapes of the roadside, the most probable shape of the roadside being determined on the basis of the roadside targets.