Abstract:
Processing methods may be performed to limit damage of features of a substrate, such as missing fin damage. The methods may include forming a plasma of an inert precursor within a processing region of a processing chamber. Effluents of the plasma of the inert precursor may be utilized to passivate an exposed region of an oxygen-containing material that extends about a feature formed on a semiconductor substrate. A plasma of a hydrogen-containing precursor may also be formed within the processing region. Effluents of the plasma of the hydrogen-containing precursor may be directed, with DC bias, towards an exposed silicon-containing material on the semiconductor substrate. The methods may also include anisotropically etching the exposed silicon-containing material with the plasma effluents of the hydrogen-containing precursor, where the plasma effluents of the hydrogen-containing precursor selectively etch silicon relative to silicon oxide.
Abstract:
Embodiments of the disclosure relate to deposition of a conformal carbon-based material. In one embodiment, the method comprises depositing a sacrificial dielectric layer over a substrate, forming patterned features on the substrate by removing portions of the sacrificial dielectric layer to expose an upper surface of the substrate, introducing a hydrocarbon source, a plasma-initiating gas, and a dilution gas into the processing chamber, generating a plasma in the processing chamber at a deposition temperature of about 80° C. to about 550° C. to deposit a conformal amorphous carbon layer on the patterned features and the exposed upper surface of the substrate, selectively removing the amorphous carbon layer from an upper surface of the patterned features and the upper surface of the substrate using an anisotropic etching process to provide the patterned features filled within sidewall spacers, and removing the patterned features formed from the sacrificial dielectric layer.
Abstract:
Methods for modulating local stress and overlay error of one or more patterning films may include modulating a gas flow profile of gases introduced into a chamber body, flowing gases within the chamber body toward a substrate, rotating the substrate, and unifying a center-to-edge temperature profile of the substrate by controlling the substrate temperature with a dual zone heater. A chamber for depositing a film may include a chamber body comprising one or more processing regions. The chamber body may include a gas distribution assembly having a blocker plate for delivering gases into the one or more processing regions. The blocker plate may have a first region and a second region, and the first region and second region each may have a plurality of holes. The chamber body may have a dual zone heater.
Abstract:
Methods for modulating local stress and overlay error of one or more patterning films may include modulating a gas flow profile of gases introduced into a chamber body, flowing gases within the chamber body toward a substrate, rotating the substrate, and unifying a center-to-edge temperature profile of the substrate by controlling the substrate temperature with a dual zone heater. A chamber for depositing a film may include a chamber body comprising one or more processing regions. The chamber body may include a gas distribution assembly having a blocker plate for delivering gases into the one or more processing regions. The blocker plate may have a first region and a second region, and the first region and second region each may have a plurality of holes. The chamber body may have a dual zone heater.
Abstract:
Processing methods may be performed to limit damage of features of a substrate, such as missing fin damage. The methods may include forming a plasma of an inert precursor within a processing region of a processing chamber. Effluents of the plasma of the inert precursor may be utilized to passivate an exposed region of an oxygen-containing material that extends about a feature formed on a semiconductor substrate. A plasma of a hydrogen-containing precursor may also be formed within the processing region. Effluents of the plasma of the hydrogen-containing precursor may be directed, with DC bias, towards an exposed silicon-containing material on the semiconductor substrate. The methods may also include anisotropically etching the exposed silicon-containing material with the plasma effluents of the hydrogen-containing precursor, where the plasma effluents of the hydrogen-containing precursor selectively etch silicon relative to silicon oxide.
Abstract:
Methods for modulating local stress and overlay error of one or more patterning films may include modulating a gas flow profile of gases introduced into a chamber body, flowing gases within the chamber body toward a substrate, rotating the substrate, and unifying a center-to-edge temperature profile of the substrate by controlling the substrate temperature with a dual zone heater. A chamber for depositing a film may include a chamber body comprising one or more processing regions. The chamber body may include a gas distribution assembly having a blocker plate for delivering gases into the one or more processing regions. The blocker plate may have a first region and a second region, and the first region and second region each may have a plurality of holes. The chamber body may have a dual zone heater.