Abstract:
Methods for modulating local stress and overlay error of one or more patterning films may include modulating a gas flow profile of gases introduced into a chamber body, flowing gases within the chamber body toward a substrate, rotating the substrate, and unifying a center-to-edge temperature profile of the substrate by controlling the substrate temperature with a dual zone heater. A chamber for depositing a film may include a chamber body comprising one or more processing regions. The chamber body may include a gas distribution assembly having a blocker plate for delivering gases into the one or more processing regions. The blocker plate may have a first region and a second region, and the first region and second region each may have a plurality of holes. The chamber body may have a dual zone heater.
Abstract:
Methods for modulating local stress and overlay error of one or more patterning films may include modulating a gas flow profile of gases introduced into a chamber body, flowing gases within the chamber body toward a substrate, rotating the substrate, and unifying a center-to-edge temperature profile of the substrate by controlling the substrate temperature with a dual zone heater. A chamber for depositing a film may include a chamber body comprising one or more processing regions. The chamber body may include a gas distribution assembly having a blocker plate for delivering gases into the one or more processing regions. The blocker plate may have a first region and a second region, and the first region and second region each may have a plurality of holes. The chamber body may have a dual zone heater.
Abstract:
Semiconductor fabrication component preparation methods are described. In embodiments, the methods include forming a first layer on a surface of the semiconductor fabrication component. The first layer is characterized by a porosity of greater than or about 0.01 vol. %. The methods further include depositing a second layer on the first layer, where the second layer is characterized by a porosity of less than or about 20 vol. %. Treated semiconductor fabrication components are also described. In embodiments, the treated components include a first layer formed in the surface of the semiconductor fabrication component, where the first layer is characterized by a porosity of greater than or about 0.01 vol. %., and a second layer positioned on the first layer, where the second layer is characterized by a porosity of less than or about 20 vol. %.
Abstract:
Provided are methods of depositing a film in high aspect ratio (AR) structures with small dimensions. The method provides flowable deposition for seamless gap-fill, film densification by low temperature inductively coupled plasma (ICP) treatment (
Abstract:
Disclosed are systems and techniques for fast and efficient detection of defects in wafers, including a system that has a factory interface (FI) coupled to a wafer carrier and a load lock chamber. The FI includes a robot fetches a wafer from the wafer carrier and deliver the first wafer to an aligner device. The aligner device imparts rotational motion to the wafer and identifies, using the rotational motion of the wafer, a position of a reference feature of the wafer. The FI further includes an optical inspection system that collects, during the rotational motion imparted to the wafer, an imaging data for the first wafer. The system further includes a processing device that performs evaluation, using the imaging data, of a presence of defect(s) in the wafer, and evaluates suitability of the wafer for wafer processing.
Abstract:
Methods for modulating local stress and overlay error of one or more patterning films may include modulating a gas flow profile of gases introduced into a chamber body, flowing gases within the chamber body toward a substrate, rotating the substrate, and unifying a center-to-edge temperature profile of the substrate by controlling the substrate temperature with a dual zone heater. A chamber for depositing a film may include a chamber body comprising one or more processing regions. The chamber body may include a gas distribution assembly having a blocker plate for delivering gases into the one or more processing regions. The blocker plate may have a first region and a second region, and the first region and second region each may have a plurality of holes. The chamber body may have a dual zone heater.
Abstract:
Methods for modulating local stress and overlay error of one or more patterning films may include modulating a gas flow profile of gases introduced into a chamber body, flowing gases within the chamber body toward a substrate, rotating the substrate, and unifying a center-to-edge temperature profile of the substrate by controlling the substrate temperature with a dual zone heater. A chamber for depositing a film may include a chamber body comprising one or more processing regions. The chamber body may include a gas distribution assembly having a blocker plate for delivering gases into the one or more processing regions. The blocker plate may have a first region and a second region, and the first region and second region each may have a plurality of holes. The chamber body may have a dual zone heater.