SILICON GERMANIUM PROCESSING
    11.
    发明申请
    SILICON GERMANIUM PROCESSING 有权
    硅锗加工

    公开(公告)号:US20150126040A1

    公开(公告)日:2015-05-07

    申请号:US14270060

    申请日:2014-05-05

    Abstract: Methods of selectively etching silicon germanium relative to silicon are described. The methods include a remote plasma etch using plasma effluents formed from a fluorine-containing precursor. Plasma effluents from the remote plasma are flowed into a substrate processing region where the plasma effluents react with the silicon germanium. The plasmas effluents react with exposed surfaces and selectively remove silicon germanium while very slowly removing other exposed materials. Generally speaking, the methods are useful for removing Si(1-X)GeX (including germanium i.e. X=1) faster than Si(1-Y)GeY, for all X>Y. In some embodiments, the silicon germanium etch selectivity results partly from the presence of an ion suppression element positioned between the remote plasma and the substrate processing region.

    Abstract translation: 描述了相对于硅选择性地蚀刻硅锗的方法。 这些方法包括使用由含氟前体形成的等离子体流出物的远程等离子体蚀刻。 来自远程等离子体的等离子体流出物流入基板处理区域,其中等离子体流出物与硅锗反应。 等离子体流出物与暴露的表面反应并选择性地去除硅锗,同时非常缓慢地除去其它暴露的材料。 一般来说,对于所有的X> Y,这些方法可用于比Si(1-Y)GeY更快地除去Si(1-X)GeX(包括锗,即X = 1)。 在一些实施例中,硅锗蚀刻选择性部分地来自位于远程等离子体和基板处理区域之间的离子抑制元件的存在。

    ISOTROPIC SILICON NITRIDE REMOVAL
    12.
    发明公开

    公开(公告)号:US20240120210A1

    公开(公告)日:2024-04-11

    申请号:US17963687

    申请日:2022-10-11

    Abstract: Exemplary methods of etching a silicon-containing material may include flowing a first fluorine-containing precursor into a remote plasma region of a semiconductor processing chamber. The methods may include flowing a sulfur-containing precursor into the remote plasma region of the semiconductor processing chamber. The methods may include forming a plasma within the remote plasma region to generate plasma effluents of the first fluorine-containing precursor and the sulfur-containing precursor. The methods may include flowing the plasma effluents into a processing region of the semiconductor processing chamber. A substrate may be positioned within the processing region. The substrate may include a trench formed through stacked layers including alternating layers of silicon nitride and silicon oxide. The methods may include isotropically etching the layers of silicon nitride while substantially maintaining the silicon oxide.

    Germanium etching systems and methods

    公开(公告)号:US10043674B1

    公开(公告)日:2018-08-07

    申请号:US15669362

    申请日:2017-08-04

    Abstract: Exemplary methods for etching a germanium-containing material may include forming a plasma of a fluorine-containing precursor in a remote plasma region of a semiconductor processing chamber. The methods may include flowing effluents of the fluorine-containing precursor through apertures defined in a chamber component. The apertures may be coated with a catalytic material. The methods may include reducing a concentration of fluorine radicals in the plasma effluents with the catalytic material. The methods may also include delivering the plasma effluents to a processing region of the semiconductor processing chamber. A substrate having an exposed region of a germanium-containing material may be housed within the processing region. The methods may further include etching the germanium-containing material.

    Selectively etching metals and metal nitrides conformally
    16.
    发明授权
    Selectively etching metals and metal nitrides conformally 有权
    选择性地蚀刻金属和金属氮化物

    公开(公告)号:US09449843B1

    公开(公告)日:2016-09-20

    申请号:US14734222

    申请日:2015-06-09

    CPC classification number: H01L21/32135 C23F1/12

    Abstract: Methods of selectively etching metals and metal nitrides from the surface of a substrate are described. The etch selectively removes metals and metal nitrides relative to silicon-containing layers such as silicon, polysilicon, silicon oxide, silicon germanium, silicon carbide, silicon carbon nitride and/or silicon nitride. The etch removes material in a conformal manner by including an oxidation operation which creates a thin uniform metal oxide. The thin uniform metal oxide is then removed by exposing the metal oxide to a metal-halogen precursor in a substrate processing region. The metal oxide may be removed to completion and the etch may stop once the uniform metal oxide layer is removed. Etches described herein may be used to uniformly trim back material on high aspect ratio features which ordinarily show higher etch rates near the opening of a gap compared to deep within the gap.

    Abstract translation: 描述了从衬底的表面选择性地蚀刻金属和金属氮化物的方法。 蚀刻相对于诸如硅,多晶硅,氧化硅,硅锗,碳化硅,氮化硅和/或氮化硅的含硅层选择性地去除金属和金属氮化物。 蚀刻通过包括产生薄的均匀金属氧化物的氧化操作以保形方式去除材料。 然后通过在基板处理区域中将金属氧化物暴露于金属卤素前体而除去薄的均匀金属氧化物。 金属氧化物可以被去除完成,并且一旦去除均匀的金属氧化物层就可能停止蚀刻。 本文所述的蚀刻可用于在高纵横比特征上均匀地修整材料,该特征通常在与间隙内的深度相比间隙开口附近显示更高的蚀刻速率。

    Non-local plasma oxide etch
    17.
    发明授权
    Non-local plasma oxide etch 有权
    非局部等离子体氧化物蚀刻

    公开(公告)号:US09111877B2

    公开(公告)日:2015-08-18

    申请号:US13790668

    申请日:2013-03-08

    Abstract: A method of etching exposed titanium oxide on heterogeneous structures is described and includes a remote plasma etch formed from a fluorine-containing precursor. Plasma effluents from the remote plasma are flawed into a substrate processing region where the plasma effluents may combine with a nitrogen-containing precursor such as an amine (N:) containing precursor. Reactants thereby produced etch, the patterned heterogeneous structures with high titanium oxide selectivity while the substrate is at elevated temperature. Titanium oxide etch may alternatively involve supplying a fluorine-containing precursor and a source of nitrogen-and-hydrogen-containing precursor to the remote plasma. The methods may be used to remove titanium oxide while removing little or no low-K dielectric, polysilicon, silicon nitride or titanium nitride.

    Abstract translation: 描述了在异质结构上蚀刻暴露的氧化钛的方法,并且包括由含氟前体形成的远程等离子体蚀刻。 来自远程等离子体的等离子体流出物有缺陷到基板处理区域,其中等离子体流出物可与含氮前体(例如含有胺(N))的前体结合。 因此,反应物在衬底处于升高的温度下产生蚀刻,具有高氧化钛选择性的图案化异质结构。 替代地,氧化钛蚀刻可以包括向远程等离子体供应含氟前体和含氮和氢的前体源。 该方法可用于除去少量或不含低K电介质,多晶硅,氮化硅或氮化钛的氧化钛。

    METHODS OF SELECTIVELY ETCHING SILICON NITRIDE

    公开(公告)号:US20250069894A1

    公开(公告)日:2025-02-27

    申请号:US18223382

    申请日:2023-07-18

    Abstract: Embodiments of the present disclosure are directed to selective etching processes. The processes include flowing a precursor comprising one or more of an interhalogen, a halogen-containing species, a pseudohalogen species, a mixture of one or more of the interhalogen, the halogen-containing species, or the pseudohalogen species and an amine or a phosphine, or a mixture of one or more of the interhalogen, the halogen-containing species, or the pseudohalogen species with a sulfur-containing species, into a semiconductor processing chamber containing a substrate, and forming an activated species of the precursor to etch a substrate. The substrate has a plurality of alternating layers of silicon oxide and silicon nitride thereon and a trench formed through the plurality of alternating layers. The silicon nitride layers are selectively etched relative to the silicon oxide layers at an etch selectivity of greater than or equal to 500:1.

Patent Agency Ranking