Abstract:
A method is disclosed using a feedback loop for focused ultrasound application. The method includes the steps of determining a location of a target side within a body using ultrasound waves, applying focused ultrasound waves to the target site, determining a new location of the target site using further ultrasound waves, and adjusting the focused ultrasound waves in response to the new location of the target site.
Abstract:
An implantable medical system for electrical recording and or providing therapy to a plurality of tissue sites without damage to surrounding blood vessels is disclosed comprising: an implant body having a plurality of therapy elements, the elements being hingedly attached at one end to the surface of the body and releasably extendable outward from the surface of the body at the other end; a release mechanism for each of the elements; and a coating material covering the body and the elements; wherein upon dissolution of the coating material after implantation, the release mechanism is capable of causing the elements to extend outward at one end from the surface of the body and into a plurality of tissue sites without damage to the surrounding blood vessels. The method of implanting the system into a body is also disclosed.
Abstract:
Disclosed is an integrated circuit comprising a substrate (10) carrying a plurality of circuit elements; a metallization stack (12, 14, 16) interconnecting said circuit elements, said metallization stack comprising a patterned upper metallization layer comprising a first metal portion (20) and a second metal portion (21); a passivation stack (24, 26, 28) covering the metallization stack; a gas sensor including a sensing material portion (32, 74) on the passivation stack; a first conductive portion (38) extending through the passivation stack connecting a first region of the sensing material portion to the first metal portion; and a second conductive portion (40) extending through the passivation stack connecting a second region of the sensing material portion to the second metal portion. A method of manufacturing such an IC is also disclosed.
Abstract:
A device is provided that includes a battery layer on a substrate, where a first battery cell is formed in the battery layer. The first battery cell includes a first anode, a first cathode, and a first electrolyte arranged between the first anode and the first cathode, where the first anode, the first cathode, and the first electrolyte are arranged in the battery layer such that perpendicular projections onto the substrate of each of the first anode and the first cathode are non-overlapping. A method of manufacturing such device is also provided. A system is also provide that includes such device for supplying power to an electronic device.
Abstract:
The invention provides an implantable multi-electrode device (300) and related methods and apparatuses. In one embodiment, the invention includes an implantable device (300) comprising: an assembly block (320); and a plurality of leads (340 . . . 348) radiating from the assembly block (320), each of the plurality of leads (340 . . . 348) containing at least one electrode (342A), such that the electrodes are distributed within a three-dimensional space, wherein the assembly block (320) includes a barb (350) for anchoring the assembly block (320) within implanted tissue.
Abstract:
A sensor (2) for sensing a first substance and a second substance, the sensor comprising first (3) and second (5) sensor components each comprising a first material (20), the first material being sensitive to both the first substance and the second substance, the sensor further comprising a barrier (18) for preventing the second substance from passing into the second sensor component (5).
Abstract:
Disclosed is a liquid immersion sensor comprising a substrate (10) carrying a conductive sensing element (20) and a corrosive agent (30) for corroding the conductive sensing element, said corrosive agent being immobilized in the vicinity of the conductive sensing element and being soluble in said liquid.
Abstract:
The invention relates to a method of determining a charged particle concentration in an analyte (100), the method comprising steps of: i) determining at least two measurement points of a surface-potential versus interface-temperature curve (c1, c2, c3, c4), wherein the interface temperature is obtained from a temperature difference between a first interface between a first ion-sensitive dielectric (Fsd) and the analyte (100) and a second interface between a second ion-sensitive dielectric (Ssd) and the analyte (100), and wherein the surface-potential is obtained from a potential difference between a first electrode (Fe) and a second electrode (Se) onto which said first ion-sensitive dielectric (Fsd) and said second ion-sensitive dielectric (Ssd) are respectively provided, And ii) calculating the charged particle concentration from locations of the at least two measurement points of said curve (c1, c2, c3, c4). This method, which still is a potentiometric electrochemical measurement, exploits the temperature dependency of a surface-potential of an ion-sensitive dielectric in an analyte. The invention further provides an electrochemical sensor deny for determining a charged particle concentration in an analyte. The invention also provides various sensors which can be used to determine the charged particle concentration, i.e. EGFET's and EIS capacitors.
Abstract:
A sensor module (130) for a catheter (110), the sensor module (130) comprising a biofilm detection unit (131) adapted for detecting a characteristic of a biofilm (132) and electric circuitry (135, 800) for providing an output signal indicative of a result of the detection.
Abstract:
A device is provided that includes a battery layer on a substrate, where a first battery cell is formed in the battery layer. The first battery cell includes a first anode, a first cathode, and a first electrolyte arranged between the first anode and the first cathode, where the first anode, the first cathode, and the first electrolyte are arranged in the battery layer such that perpendicular projections onto the substrate of each of the first anode and the first cathode are non-overlapping. A method of manufacturing such device is also provided. A system is also provide that includes such device for supplying power to an electronic device.