Abstract:
Described are exhaust gas treatment systems for treatment of an engine exhaust gas stream containing NOx. The exhaust gas treatment system comprises an engine, a catalyst system including a selective catalytic reduction article comprising two zones, an upstream zone comprising iron-promoted first molecular sieves and a downstream zone comprising copper-promoted second molecular sieves. The catalyst system is effective to reduce high NOx levels in the exhaust gas stream. Also described are methods for treatment of engine exhaust gas streams, comprising treating engine exhaust gas streams containing high NOx levels with catalyst systems including selective catalytic reduction articles having two zones.
Abstract:
Described is a catalyst composition suitable for use as a selective catalytic reduction catalyst, including small-pore molecular sieve particles having a pore structure and a maximum ring size of eight tetrahedral atoms and impregnated with a promoter metal, and metal oxide particles dispersed within the small-pore molecular sieve particles and external to the pore structure of the small-pore molecular sieve particles, wherein the metal oxide particles include one or more oxides of a transition metal or lanthanide of Group 3 or Group 4 of the Periodic Table. A method for preparing the catalyst, a method for selectively reducing nitrogen oxides, and an exhaust gas treatment system are also described.
Abstract:
Certain selective catalytic reduction (SCR) articles, systems and methods provide for high NOx conversion while at the same time low N2O formation. The articles, systems and methods are suitable for instance for the treatment of exhaust gas of diesel engines. Certain articles have zoned coatings containing copper-containing molecular sieves disposed thereon, where for example a concentration of catalytic copper in an upstream zone is lower than the concentration of catalytic copper in a downstream zone.
Abstract:
Described are exhaust gas treatment systems for treatment of an engine exhaust gas stream containing NOx. The exhaust gas treatment system comprises an engine, a catalyst system including a selective catalytic reduction article comprising two zones, an upstream zone comprising iron-promoted first molecular sieves and a downstream zone comprising copper-promoted second molecular sieves. The catalyst system is effective to reduce high NOx levels in the exhaust gas stream. Also described are methods for treatment of engine exhaust gas streams, comprising treating engine exhaust gas streams containing high NOx levels with catalyst systems including selective catalytic reduction articles having two zones.
Abstract:
Described are catalytic articles comprising a substrate having a washcoat on the substrate, the washcoat containing a catalytic component having a first average (D50) particle size and a functional binder component having a second average (D50) particle size in the range of about 10 nm to about 1000 nm, wherein the ratio of the first average (D50) particle size to the second average (D50) particle size is greater than about 10:1. The catalytic articles are useful in methods and systems to purify exhaust gas streams from an engine.
Abstract:
Described is a selective catalytic reduction material comprising a spherical particle including an agglomeration of crystals of a molecular sieve. The catalyst is a crystalline material that is effective to catalyze the selective catalytic reduction of nitrogen oxides in the presence of a reductant at temperatures between 200° C. and 600° C. A method for selectively reducing nitrogen oxides and an exhaust gas treatment system are also described.
Abstract:
Described are compositions and catalytic articles comprising both a copper-promoted 8-ring small pore molecular sieve and an iron-promoted 8-ring small pore molecular sieve. The catalytic articles are useful in methods and systems to catalyze the reduction of nitrogen oxides in the presence of a reductant.
Abstract:
Described is a selective catalytic reduction material comprising a spherical particle including an agglomeration of crystals of a molecular sieve. The catalyst is a crystalline material that is effective to catalyze the selective catalytic reduction of nitrogen oxides in the presence of a reductant at temperatures between 200° C. and 600° C. A method for selectively reducing nitrogen oxides and an exhaust gas treatment system are also described.
Abstract:
Described are compositions and catalytic articles comprising both a copper-promoted 8-ring small pore molecular sieve and an iron-promoted 8-ring small pore molecular sieve. The catalytic articles are useful in methods and systems to catalyze the reduction of nitrogen oxides in the presence of a reductant.
Abstract:
The present disclosure recognizes a correlation between zeolitic surface area (ZSA) of a catalyst composition and its catalytic activity. Particularly, the disclosure provides catalyst articles for diesel NOx abatement, including a substrate and a washcoat layer containing metal-promoted molecular sieves, wherein the zeolitic surface area (ZSA) of the catalyst article is about 100 m2/g or greater, the volumetric surface area is about 900 m2/in3 or greater, and/or the total zeolitic surface area (tZSA) is about 1200 m2 or greater. The disclosure further relates to methods for evaluating ZSA, volumetric ZSA, and tZSA, e.g., including the steps of coating a catalyst composition comprising metal-promoted molecular sieves onto a substrate; calcining and aging the catalyst composition; determining the ZSA (or volumetric ZSA or tZSA) thereof; and correlating the ZSA (or volumetric ZSA or tZSA) with catalyst composition NOx abatement activity to determine whether the catalyst composition is suitable for an intended use.