摘要:
A method of patterning a semiconductor film is described. According to an embodiment of the present invention, a hard mask material is formed on a silicon film having a global crystal orientation wherein the semiconductor film has a first crystal plane and second crystal plane, wherein the first crystal plane is denser than the second crystal plane and wherein the hard mask is formed on the second crystal plane. Next, the hard mask and semiconductor film are patterned into a hard mask covered semiconductor structure. The hard mask covered semiconductor structured is then exposed to a wet etch process which has sufficient chemical strength to etch the second crystal plane but insufficient chemical strength to etch the first crystal plane.
摘要:
An NMOS transistor may be formed with a biaxially strained silicon upper layer having a thickness of greater than 500 Angstroms. The resulting NMOS transistor may have good performance and may exhibit reduced self-heating. A PMOS transistor may be formed with both a biaxially and uniaxially strained silicon germanium layer. A source substrate bias applied to both NMOS and PMOS transistors can enhance their performance.
摘要:
A transistor may be formed of different layers of silicon germanium, a lowest layer having a graded germanium concentration and upper layers having constant germanium concentrations such that the lowest layer is of the form Si1-xGex. The highest layer may be of the form Si1-yGey on the PMOS side. A source and drain may be formed of epitaxial silicon germanium of the form Si1-zGez on the PMOS side. In some embodiments, x is greater than y and z is greater than x in the PMOS device. Thus, a PMOS device may be formed with both uniaxial compressive stress in the channel direction and in-plane biaxial compressive stress. This combination of stress may result in higher mobility and increased device performance in some cases.
摘要翻译:晶体管可以由不同层的硅锗形成,具有梯度锗浓度的最低层和具有恒定锗浓度的上层,使得最底层具有Si 1-x Ge Ge > x SUB>。 在PMOS侧,最高层可以是Si 1-y N y O y的形式。 源极和漏极可以由PMOS侧的Si 1-z N z z z的外延硅锗形成。 在一些实施例中,在PMOS器件中,x大于y且z大于x。 因此,PMOS器件可以在通道方向上具有单轴压应力和面内双轴压应力。 在某些情况下,应力的这种组合可能导致较高的移动性和增加的设备性能。
摘要:
Embodiments of the invention provide a device with a multiple gates. Stress material within recesses of a device body metal gate may cause a stress in channel regions of the device, thereby improving performance of the device.
摘要:
A structure to form an energy well within a Carbon nanotube is described. The structure includes a doped semiconductor region and an undoped semiconductor region. The Carbon nanotube is between the doped semiconductor region and the undoped semiconductor region. The structure also includes a delta doped semiconductor region. The undoped semiconductor region is between the Carbon nanotube and the delta doped region. The delta doped semiconductor region is doped opposite that of the doped semiconductor region.
摘要:
A contact architecture for nanoscale channel devices having contact structures coupling to and extending between source or drain regions of a device having a plurality of parallel semiconductor bodies. The contact structures being able to contact parallel semiconductor bodies having sub-lithographic pitch.
摘要:
Strained channel field effect transistors may have a threshold voltage shift. This threshold voltage shift may be compensated for by adjusting channel doping. But this also adversely affects mobility. The threshold voltage shift may be compensated, without adversely affecting mobility, by tailoring the workfunction of a metal gate electrode used in the transistor to adequately compensate for that threshold voltage shift. For example, in some embodiments, an appropriate metal may be selected with a slightly higher workfunction or, in other cases, the workfunction of a selected metal may be adjusted by, for example, doping the metal gate electrode with a material which increases the workfunction of the gate electrode.
摘要:
A structure to form an energy well within a Carbon nanotube is described. The structure includes a doped semiconductor region and an undoped semiconductor region. The Carbon nanotube is between the doped semiconductor region and the undoped semiconductor region. The structure also includes a delta doped semiconductor region. The undoped semiconductor region is between the Carbon nanotube and the delta doped region. The delta doped semiconductor region is doped opposite that of the doped semiconductor region.
摘要:
A semiconductor device comprising a gate electrode formed on a gate dielectric layer formed on a semiconductor film. A pair of source/drain regions are formed adjacent the channel region on opposite sides of the gate electrode. The source and drain regions each comprise a semiconductor portion adjacent to and in contact with the semiconductor channel and a metal portion adjacent to and in contact with the semiconductor portion.
摘要:
A method for making a semiconductor device is described. That method comprises forming a high-k gate dielectric layer that contacts a metal oxide layer. The metal oxide layer is generated by forming a metal layer, then oxidizing the metal layer.