Abstract:
A lamp has an optically transmissive enclosure and a base. A tower extends from the base into the enclosure and supports an LED assembly in the enclosure. The LED assembly comprises a plurality of LEDs operable to emit light when energized through an electrical path from the base. The tower and the LED assembly are arranged such that the plurality of LEDs are disposed about the periphery of the tower in a band and face outwardly toward the enclosure to create a source of the light that appears as a glowing filament. The tower forms part of a heat sink that transmits heat from the LED assembly to the ambient environment. The LED assembly has a three-dimensional shape. An electrical interconnect connects a conductor to the heat sink where the conductor is in the electrical path between the LED assembly and the base.
Abstract:
In one embodiment, a lamp comprises an optically transmissive enclosure. An LED array is disposed in the optically transmissive enclosure operable to emit light when energized through an electrical connection. A gas is contained in the enclosure to provide thermal coupling to the LED array. The gas may include oxygen.
Abstract:
A lamp comprises an optically transmissive enclosure. A plurality of LEDs for emitting light are located to emit light toward the enclosure. The enclosure has at least one reflective area disposed on the enclosure to reflect a portion of the light into the enclosure to create a desired luminous intensity distribution.
Abstract:
A lamp has an optically transmissive enclosure and a base. A tower extends from the base into the enclosure and supports an LED assembly in the enclosure. The LED assembly comprises a plurality of LEDs operable to emit light when energized through an electrical path from the base. The tower and the LED assembly are arranged such that the plurality of LEDs are disposed about the periphery of the tower in a band and face outwardly toward the enclosure to create a source of the light that appears as a glowing filament. The tower forms part of a heat sink that transmits heat from the LED assembly to the ambient environment. The LED assembly has a three-dimensional shape. An electrical interconnect connects a conductor to the heat sink where the conductor is in the electrical path between the LED assembly and the base.
Abstract:
A lamp includes an optically transmissive enclosure for emitting an emitted light and a base connected to the enclosure. At least one first LED filament and at least one second LED filament are located in the enclosure and are operable to emit light when energized through an electrical path from the base. The first LED filament emits light having a first correlated color temperature (CCT) and the second LED filament emits light having a second CCT that are combined to generate the emitted light. A controller operates to change the CCT of the emitted light when the lamp is dimmed.
Abstract:
A LED fixture is provided, the lamp comprising a LED board having a thermally conductive periphery, the LED board comprising at least one LED operable to emit light when energized through an electrical path from a base; and a heat sink assembly thermally coupled to the thermally conductive periphery.
Abstract:
The present invention is a semiconductor structure for light emitting devices that can emit in the red to ultraviolet portion of the electromagnetic spectrum. The structure includes a first n-type cladding layer of AlxInyGa1−x−yN, where 0≦x≦1 and 0≦y
Abstract:
A lamp has an optically transmissive enclosure and a base. A tower extends from the base into the enclosure and supports an LED assembly in the enclosure. The LED assembly comprises a plurality of LEDs operable to emit light when energized through an electrical path from the base. The tower and the LED assembly are arranged such that the plurality of LEDs are disposed about the periphery of the tower in a band and face outwardly toward the enclosure to create a source of the light that appears as a glowing filament. The tower forms part of a heat sink that transmits heat from the LED assembly to the ambient environment. The LED assembly has a three-dimensional shape. An electrical interconnect connects a conductor to the heat sink where the conductor is in the electrical path between the LED assembly and the base.
Abstract:
A lamp having an enclosure with a reflector and a lens where the reflector is made of thermally conductive material. A base is coupled to the enclosure. An LED is located in the enclosure and emits light when energized through an electrical path from the base. A heat sink having a heat dissipating portion that may be at least partially exposed to the ambient environment and heat conducting portion that is thermally coupled to the LED. The reflector is thermally coupled to the heat sink and is exposed to the exterior of the lamp such that heat from the heat sink may be dissipated to the ambient environment at least partially through the reflector.
Abstract:
A semiconductor light emitting apparatus includes an elongated hollow wavelength conversion tube that includes an elongated wavelength conversion tube wall having wavelength conversion material, such as phosphor, dispersed therein. A semiconductor light emitting device is oriented to emit light inside the elongated hollow wavelength conversion tube to impinge upon the elongated wavelength conversion tube wall and the wavelength conversion material dispersed therein. The elongated hollow wavelength conversion tube may have an open end, a crimped end, a reflective end, and/or other configurations. Multiples tubes and/or multiple semiconductor light emitting devices may also be used in various configurations. Related assembling methods are also described.