Abstract:
Systems, apparatuses, and methods include predicting a sulfur exposure of one or more copper-zeolite catalysts deployed in an exhaust aftertreatment system; comparing the predicted sulfur exposure to a predefined sulfur exposure threshold; and responsive to the determination, heating the exhaust aftertreatment catalyst to a predefined heat treatment temperature for a predefined time period to desulfate the one or more copper-zeolite catalysts.
Abstract:
An aftertreatment system comprises a first passageway having a first temperature and a second passageway having a second temperature different than the first temperature. A turbine is disposed downstream from the first passageway and upstream from the second passageway. The turbine is in fluidic communication with the first passageway and the second passageway. The turbine is structured to receive an exhaust gas from the first passageway, generate energy using the exhaust gas flowing through the turbine and communicate the exhaust gas to the second passageway. The aftertreatment system also includes an insertion device structured to insert an exhaust reductant into the first passageway. A selective catalytic reduction system is configured to receive the exhaust gas from the second passageway and treat the exhaust gas. The first temperature can be higher than the second temperature.
Abstract:
An apparatus is disclosed, including an exhaust conditions module structured to interpret a diesel particulate filter (DPF) delta pressure value, a flow balance correlation, a NOx input value, and an exhaust flow rate value. A flow determination module is structured to determine a flow imbalance value in response to the DPF delta pressure value, the flow balance correlation, and the exhaust flow rate value. A reductant determination module is structured to determine a first reductant injection command and a second reductant injection command in response to the flow imbalance value and the NOx input value.
Abstract:
Systems and methods for managing aftertreatment systems that include passive NOx adsorption devices and SCR catalyst elements are disclosed. Temperature generation devices upstream of the passive NOx adsorption devices facilitate control of the aftertreatment systems to improve fuel economy and NOx conversion efficiency.
Abstract:
An exhaust aftertreatment system includes an oxidation catalyst and a selective catalytic reduction (SCR) catalyst disposed in an exhaust stream of an internal combustion engine. A stay warm thermal management strategy is employed after warm-up of the aftertreatment system is complete to maintain the aftertreatment system above a temperature providing a desired performance threshold of one or more components of the aftertreatment system, such as the oxidation catalyst or the SCR catalyst.
Abstract:
A filtration system for a fuel cell hybrid propulsion system includes a first stage filter, a second stage filter positioned downstream of the first stage filter, and a third stage filter positioned downstream of the second stage filter and configured to be positioned upstream of a fuel cell system. The first stage filter has first pores with a first mean pore size. The second stage filter has second pores with a second mean pore size. The third stage filter has third pores with a third mean pore size. The second mean pore size is less than the first mean pore size. The third mean pore size is less than or equal to the second mean pore size. The first, second, and third stage filter are structured to filter an airflow prior to being received by the fuel cell system.
Abstract:
A fuel ejector assembly includes a nozzle structured to receive fuel from a fuel conduit and eject the fuel therethrough, and an exhaust gas recirculation (“EGR”) conduit structured to communicate a recirculated exhaust gas therethrough. A mixing portion is disposed downstream of the nozzle and the EGR conduit, the nozzle and the EGR conduit fluidly coupled to the mixing portion such that the mixing portion receives each of the fuel and the recirculated exhaust gas. A diffuser is disposed downstream of the mixing portion and is configured to be fluidly coupled to an engine to communicate a mixture of the fuel and the recirculated exhaust gas to the engine.
Abstract:
Systems, methods and apparatus are disclosed for targeted regeneration of a catalyst device in an exhaust aftertreatment system of an internal combustion engine. The targeted regeneration can include interpreting, initiating, and/or completing a regeneration event for an SCR catalyst or other type of catalyst in response to a catalyst deactivation condition. A catalyst regeneration event includes at least one of exposing the catalyst to a sufficiently high temperature over a time period that removes contaminants from the catalyst and manipulation of the exhaust gas composition to initiate and/or accelerate removal of contaminants from the catalyst.
Abstract:
An exhaust aftertreatment system includes an oxidation catalyst and a selective catalytic reduction (SCR) catalyst disposed in an exhaust stream of an internal combustion engine. A stay warm thermal management strategy is employed after warm-up of the aftertreatment system is complete to maintain the aftertreatment system above a temperature providing a desired performance threshold of one or more components of the aftertreatment system, such as the oxidation catalyst or the SCR catalyst.
Abstract:
An aftertreatment system comprises a first passageway having a first temperature and a second passageway having a second temperature different than the first temperature. A turbine is disposed downstream from the first passageway and upstream from the second passageway. The turbine is in fluidic communication with the first passageway and the second passageway. The turbine is structured to receive an exhaust gas from the first passageway, generate energy using the exhaust gas flowing through the turbine and communicate the exhaust gas to the second passageway. The aftertreatment system also includes an insertion device structured to insert an exhaust reductant into the first passageway. A selective catalytic reduction system is configured to receive the exhaust gas from the second passageway and treat the exhaust gas. The first temperature can be higher than the second temperature.