Abstract:
A method to form a choke is disclosed, wherein the method comprises: encapsulating a hollow coil by a molding body; forming a first core, wherein the first core comprises a pillar; and disposing at least one first portion of the pillar inside the encapsulated hollow coil. The method avoids the overflow or vertical flow issue during a molding process for encapsulating a coil that has been wound on a core already.
Abstract:
The present invention discloses an electronic package structure. The body has a top surface with a cavity thereon, the first conductive element is disposed in the cavity, and the second conductive element is disposed in the body. The first external electrode electrically connected to the first conductive element and the second external electrode electrically connected to the second conductive element are both disposed on the top surface of the body or a first surface formed by the top surface of the encapsulation compound and the exposed portions of the top surface of the body which are not covered by the encapsulation compound.
Abstract:
A magnetic device includes a T-shaped magnetic core, a wire coil and a magnetic body. The T-shaped magnetic core includes a base and a pillar, and is made of an annealed soft magnetic metal material, a core loss PCL (mW/cm3) of the T-shaped magnetic core satisfying: 0.64×f0.95×Bm2.20≦PCL≦7.26×f1.41×Bm1.08, where f (kHz) represents a frequency of a magnetic field applied to the T-shaped magnetic core, and Bm (kGauss) represents the operating magnetic flux density of the magnetic field at the frequency. The magnetic body fully covers the pillar, any part of the base that is located above the bottom surface of the base, and any part of the wire coil that is located directly above the top surface of the base.
Abstract:
A magnetic device includes a T-shaped magnetic core, a wire coil and a magnetic body. The T-shaped magnetic core includes a base and a pillar, and is made of an annealed soft magnetic metal material, a core loss PCL (mW/cm3) of the T-shaped magnetic core satisfying: 0.64×f0.95×Bm2.20≦PCL≦7.26×f1.41×Bm1.08, where f (kHz) represents a frequency of a magnetic field applied to the T-shaped magnetic core, and Bm (kGauss) represents the operating magnetic flux density of the magnetic field at the frequency. The magnetic body fully covers the pillar, any part of the base that is located above the bottom surface of the base, and any part of the wire coil that is located directly above the top surface of the base.
Abstract:
An inductor is disclosed, the inductor comprising: a T-shaped magnetic core, being made of a material comprising an annealed soft magnetic metal material and having a base and a pillar integrally formed with the base, wherein μC×Hsat≥1800, where μC is a permeability of the T-shaped magnetic core, and Hsat (Oe) is a strength of the magnetic field at 80% of μC0, where μC0 is the permeability of the T-shaped magnetic core when the strength of the magnetic field is 0.
Abstract:
A magnetic component structure with thermal conductive filler, including two magnetic cores combining together to form an inner accommodating space and at least one core opening, two plate portions connect each other through an inner leg structure and two outer leg structures, a bobbin sleeving on the inner leg structure, a coil winding on the bobbin, a bobbin housing surrounding the bobbin and the coil winding and form winding opening facing the at least one core opening, gaps are formed between the encasing structure constituted by the bobbin housing and the bobbin sleeving and the magnetic cores, a thermal conductive filler formed between the bobbin and the bobbin housing and encapsulating at least parts of the coil winding, and a cooling surface contacts the magnetic cores and the thermal conductive filler, the thermal conductive filler extends outwardly to contact the cooling surface through the opening and the winding opening.
Abstract:
An inductor is disclosed, the inductor comprising: a T-shaped magnetic core, being made of a material comprising an annealed soft magnetic metal material and having a base and a pillar integrally formed with the base, wherein the volume of the base is V1 and the volume of the pillar is V2; a coil wound on the pillar; and a magnetic body encapsulating the pillar, the coil and a portion of the base, wherein the ratio of V1 to V2 (V1/V2) is configured in a pre-determined range so as to reduce the total core loss of the inductor with the equivalent permeability of the inductor being between 28.511 and 52.949.
Abstract:
An electronic module is disclosed. The electronic module includes a substrate, a plurality of electronic components electrically connected to a first side of the substrate, and another plurality of electronic components embedded in the substrate. In some other embodiments, the electronic module further comprises a heat sink disposed on at least one of the plurality of electronic components to dissipate the heat generated by the at least one of the plurality of electronic components. And, in some other embodiment, the electronic module further comprises a molding disposed on the plurality of electronic components and, in further embodiments, the heat sink.
Abstract:
The present invention discloses an electronic package structure. The body has a top surface with a cavity thereon, the first conductive element is disposed in the cavity, and the second conductive element is disposed in the body. The first external electrode electrically connected to the first conductive element and the second external electrode electrically connected to the second conductive element are both disposed on the top surface of the body or a first surface formed by the top surface of the encapsulation compound and the exposed portions of the top surface of the body which are not covered by the encapsulation compound.
Abstract:
The present invention discloses an electronic package structure. The body has a top surface with a cavity thereon, the first conductive element is disposed in the cavity, and the second conductive element is disposed in the body. The first external electrode electrically connected to the first conductive element and the second external electrode electrically connected to the second conductive element are both disposed on the top surface of the body or a first surface formed by the top surface of the encapsulation compound and the exposed portions of the top surface of the body which are not covered by the encapsulation compound.