摘要:
A phase-change memory device has an oxidation barrier layer to protect against memory cell contamination or oxidation and a method of manufacturing the same. In one embodiment, a semiconductor memory device comprises a molding layer overlying a semiconductor substrate. The molding layer has a protrusion portion vertically extending from a top surface thereof. The device further includes a phase-changeable material pattern adjacent the protrusion portion and a lower electrode electrically connected to the phase-changeable material pattern.
摘要:
Semiconductor devices having scalable two transistor memory cells, and methods of fabricating the same, are disclosed. The semiconductor devices include a semiconductor substrate having first, second and third isolation layers thereon. The first and second isolation layers are spaced apart to define a first active region therebetween, and the second and third isolation layers are likewise spaced apart to form a second active region therebetween. A cell gate is provided on each active region that includes a gate dielectric layer, a storage node, a multiple tunnel junction barrier and a source layer that are sequentially stacked. The device also includes first and second control lines that surround at least a portion of each sidewall of the cell gates. A dielectric layer may be interposed between the sidewalls of the cell gates and the control line that surrounds it. A data line connects to the cell gates.
摘要:
An upper insulating layer is formed on a semiconductor substrate, the upper insulating layer having an etch selection ratio relative to a lower insulating layer. The upper insulating layer is anisotropically etched by using a contact pad forming mask, to form an opening exposing an upper surface of the semiconductor substrate between conductive patterns on the substrate. The side walls of the upper insulating layer are then isotropically etched, using the above mask again, to expand the size of the opening. The expanded opening is then filled with a conductive layer to form a contact pad to be electrically connected to the semiconductor substrate.
摘要:
In a method of manufacturing an MRAM device, a memory unit including a lower electrode, an MTJ structure and an upper electrode sequentially stacked is formed on a substrate. A protective layer structure including a capping layer, a sacrificial layer and an etch stop layer sequentially stacked is formed on the substrate to cover the memory unit. An insulating interlayer is formed on the protective layer structure. The insulating interlayer is formed to form an opening exposing the protective layer structure. The exposed protective layer structure is partially removed to expose the upper electrode. A wiring is formed on the exposed upper electrode to fill the opening.
摘要:
In one embodiment, a phase-change memory device has an oxidation barrier layer to protect against memory cell contamination or oxidation and a method of manufacturing the same. In one embodiment, a semiconductor memory device comprises a molding layer overlying a semiconductor substrate. The molding layer has a protrusion portion vertically extending from a top surface thereof. The device further includes a phase-changeable material pattern adjacent the protrusion portion and a lower electrode electrically connected to the phase-changeable material pattern.
摘要:
In one embodiment, a phase-change memory device has an oxidation barrier layer to protect against memory cell contamination or oxidation and a method of manufacturing the same. In one embodiment, a semiconductor memory device comprises a molding layer overlying a semiconductor substrate. The molding layer has a protrusion portion vertically extending from a top surface thereof. The device further includes a phase-changeable material pattern adjacent the protrusion portion and a lower electrode electrically connected to the phase-changeable material pattern.
摘要:
A method of manufacturing an MRAM device includes sequentially forming a first insulating interlayer and an etch-stop layer on a substrate. A lower electrode is formed through the etch-stop layer and the first insulating interlayer. An MTJ structure layer and an upper electrode are sequentially formed on the lower electrode and the etch-stop layer. The MTJ structure layer is patterned by a physical etching process using the upper electrode as an etching mask to form an MTJ structure at least partially contacting the lower electrode. The first insulating interlayer is protected by the etch-stop layer so not to be etched by the physical etching process.
摘要:
The present invention provides a multi-level memory device and method of operating the same. The device comprises a memory structure in which a distribution density of resistance levels around its minimum value is higher than that around its maximum value.
摘要:
A non-volatile memory device includes a substrate, an insulating layer on the substrate, and a plurality of serially connected resistive memory cells stacked in the insulating layer such that a first one of the plurality of resistive memory cells is on the substrate and a next one of the plurality of resistive memory cells is on the first one of the plurality of resistive memory cells to define a NAND-type resistive memory cell string. A bit line on the insulating layer is electrically connected to a last one of the plurality of resistive memory cells. At least one of the plurality of resistive memory cells may include a switching device and a data storage element including a variable resistor connected in parallel with the switching device. Related devices and fabrication methods are also discussed.
摘要:
Methods of fabricating a phase change memory device having a small area of contact are provided. The method includes forming a lower interlayer insulating layer on a semiconductor substrate, and forming a lower conductor pattern within the lower inter-insulating layer. A first insulating layer pattern which crosses a top surface of the lower conductor pattern is formed on the semiconductor substrate having the lower conductor pattern. A conductive spacer pattern electrically connected to the lower conductor pattern is formed on a sidewall of the first insulating layer pattern. A first interlayer insulating layer is formed on the semiconductor substrate having the conductive spacer pattern. The first interlayer insulating layer and the conductive spacer pattern are planarized to form a bottom electrode. A second insulating layer pattern which crosses a top surface of the bottom electrode and exposes a portion of the bottom electrode is formed on the semiconductor substrate having the bottom electrode. A phase change material spacer electrically connected to the bottom electrode is formed on a sidewall of the second insulating layer pattern. A second interlayer insulating layer is formed on the semiconductor substrate having the phase change material spacer. The second interlayer insulating layer and the phase change material spacer are planarized to form a phase change material pattern.