摘要:
A channel-cell system is provided for detecting the presence and/or measuring the presence of analyte particles in a sample stream comprising: a) a laminar flow channel; b) two inlets in fluid connection with the laminar flow channel for respectively conducting into the laminar flow channel (1) an indicator stream which may comprise an indicator substance which indicates the presence of the analyte particles by a detectable change in property when contacted with the analyte particles, and (2) the sample stream; c) wherein the laminar flow channel has a depth sufficiently small to allow laminar flow of the streams and a length sufficient to allow particles of the analyte to diffuse into the indicator stream to the substantial exclusion of the larger particles in the sample stream to form a detection area; and d) an outlet for conducting the streams out of the laminar flow channel to form a single mixed stream.
摘要:
This invention provides methods for using liquid junction potentials to control the transport of charged particles in fluid streams that are in laminar flow within microfluidic channels. Applications of the methods of this invention include sample preconditioning (removal of interfering substances), electrophoretic separation (fractionation) of charged particles, enhanced or delayed mixing of charged particles across a fluid interface relative to diffusion only, focusing charged particles in a fluid stream in one or two dimensions, and concentration of charged reactants at a fluid interface.
摘要:
This invention provides methods for using liquid junction potentials to control the transport of charged particles in fluid streams that are in laminar flow within microfluidic channels. Applications of the methods of this invention include sample preconditioning (removal of interfering substances), electrophoretic separation (fractionation) of charged particles, enhanced or delayed mixing of charged particles across a fluid interface relative to diffusion only, focusing charged particles in a fluid stream in one or two dimensions, and concentration of charged reactants at a fluid interface.
摘要:
Methods and apparatuses are provided for determining presence and concentration of analytes by exploiting molecular binding reactions and differential diffusion rates. Analyte particles and binding particles are allowed to diffuse toward each other, and slowing of the diffusion front is detected when they meet. From the position of the diffusion front, presence and concentration of analyte particles can be determined. One embodiment provides a competitive immunoassay in a microfluidic format. This diffusion immunoassay (DIA) relies on measuring the concentration of labeled antigen along one dimension of a microchannel after allowing it to diffuse for a short time into a region containing specific antibodies. A simple microfluidic device, the T-Sensor, was used to implement a DIA to measure the concentration of phenytoin, a small drug molecule. Concentrations of analyte over the range of 50 to 1600 nM can be measured in less than a minute. The assay is homogeneous, rapid, requires only microliter volumes of reagents and sample, and is applicable to a wide range of analytes, including therapeutic drugs, molecular biological markers, and environmental contaminants. Methods for separating particles of similar size in a diffusion separator are also provided.
摘要:
An electroösmotic mixing device and a method for mixing one or more fluids for use in meso- or microfluidic device applications. The mixing device provides batch or continuous mixing of one or more fluids in meso- or microfluidic channels. An electric field is generated in the channel in substantial contact with chargeable surfaces therein. No alterations of the geometry of existing flow paths need be made, and the degree of mixing in the device can be controlled by the length of the electrodes, the flow rate past the electrodes, and the voltage applied to those electrodes. The degree of mixing is affected by choice of materials for the chargeable surface (in some cases by the selection of materials or coatings for channel walls) and the ionic strength of the fluids and the type and concentration of ions in the fluids. The ionic strength of fluids to be mixed is sufficiently low to allow electroosmotic flow. The method and device of this invention is preferably applied to fluids to having low ionic strength less than or equal to about 1 mM.
摘要:
This invention provides microfabricated systems for extraction of desired particles from a sample stream containing desired and undesired particles. The sample stream is placed in laminar flow contact with an extraction stream under conditions in which inertial effects are negligible. The contact between the two streams is maintained for a sufficient period of time to allow differential transport of the desired particles from the sample stream into the extraction stream. In a preferred embodiment the differential transport mechanism is diffusion. The extraction system of this invention coupled to a microfabricated diffusion-based mixing device and/or sensing means allows picoliter quantities of fluid to be processed or analyzed on devices no larger than silicon wafers. Such diffusion-based mixing or sensing devices are preferably channel cell systems for detecting the presence and/or measuring the quantity of analyte particles in a sample stream.