Abstract:
A trench schottky diode which includes a thin insulation layer on the sidewalls of its trenches and a relatively thicker insulation layer at the bottoms of its trenches.
Abstract:
A Merged P-i-N Schottky device in which the oppositely doped diffusions extend to a depth and have been spaced apart such that the device is capable of absorbing a reverse avalanche energy comparable to a Fast Recovery Epitaxial Diode having a comparatively deeper oppositely doped diffusion region.
Abstract:
A fabrication process for a Schottky barrier structure includes forming a nitride layer directly on a surface of an epitaxial (“epi”) layer and subsequently forming a plurality of trenches in the epi layer. The interior walls of the trenches are then deposited with a final oxide layer without forming a sacrificial oxide layer to avoid formation of a beak bird at the tops of the interior trench walls. A termination trench is etched in the same process step for forming the plurality of trenches in the active area.
Abstract:
In accordance with an embodiment of the present invention, a semiconductor module includes a first semiconductor device having a first plurality of leads including a first gate/base lead, a first drain/collector lead, and a first source/emitter lead. The module further includes a second semiconductor device and a circuit board. The second semiconductor device has a second plurality of leads including a second gate/base lead, a second drain/collector lead, and a second source/emitter lead. The circuit board has a plurality of mounting holes, wherein each of the first plurality of leads and the second plurality of leads is mounted into a respective one of the plurality of mounting holes. At the plurality of mounting holes, a first distance from the first gate/base lead to the second gate/base lead is different from a second distance from the first source/emitter lead to the second source/emitter lead.
Abstract:
A semiconductor device having a termination structure, which includes at least one spiral resistor disposed within a spiral trench and connected between two power poles of the device.
Abstract:
A Schottky diode is adjusted by implanting an implant species by way of a titanium silicide Schottky contact and driving the implant species into the underlying silicon substrate by a rapid anneal. The implant is at a low energy, (e.g. about 10 keV) and at a low dose (e.g. less than about 9E12 atoms per cm2) such that the barrier height is slightly increased and the leakage current reduced without forming pn junction and retaining the peak boron concentration in the titanium silicide layer.
Abstract translation:通过用硅化钛肖特基接触注入植入物种并通过快速退火将植入物种驱动到下面的硅衬底中来调节肖特基二极管。 植入物处于低能量(例如约10keV)和低剂量(例如小于约9E12原子/ cm 2),使得势垒高度略微增加,并且漏电流减小而不形成pn结,并且 保留钛硅化物层中的峰值硼浓度。
Abstract:
A trench type Schottky device has a guard ring diffusion of constant depth between the outermost of an active trench and an outer surrounding termination trench. The junction curvature of the guard ring diffusion is suppressed or cut out by the trenches.