Abstract:
A method of manufacturing a semiconductor device includes: forming a first trench in a first area of a drift layer that has a surface including the first area and a second area; growing a crystal of a p-type base layer on a surface of the drift layer after forming the first trench; and growing a crystal of an n-type source layer on a surface of the base layer. Material of the drift layer, the base layer, and the source layer are a wide-gap semiconductor.
Abstract:
A semiconductor device includes a semiconductor substrate, a top electrode in contact with a top surface of the semiconductor substrate, a bottom electrode in contact with a bottom surface of the semiconductor substrate, and an oxide film in contact with the top surface of the semiconductor substrate. The semiconductor substrate includes an element region and an outer peripheral region. The element region is a region where the top electrode is in contact with the top surface of the semiconductor substrate. The outer peripheral region is a region where the oxide film is in contact with the top surface of the semiconductor substrate, and is located between the element region and an outer peripheral end surface of the semiconductor substrate. The element region includes a semiconductor element connected between the top electrode and the bottom electrode. The outer peripheral region includes surface high-voltage-breakdown regions, deep high-voltage-breakdown regions, and a drift region.
Abstract:
A silicon carbide semiconductor device includes: an element isolation layer and an electric field relaxation layer. The element isolation layer is arranged, from the surface of a base region to be deeper than the base region, between a main cell region and a sense cell region, and isolates the main cell region from the sense cell region. The electric field relaxation layer is arranged from a bottom of the base region to be deeper than the element isolation layer. The electric field relaxation layer is divided into a main cell region portion and a sense cell region portion. At least a part of the element isolation layer is arranged inside of a division portion of the electric field relaxation layer.
Abstract:
A switching device may include a semiconductor substrate; gate trenches; bottom insulating layers covering bottom surfaces of the gate trenches; gate insulating layers covering side surfaces of the gate trenches; and gate electrodes arranged in the gate trenches. The gate insulating layers in a center portion may have a first thickness and a first dielectric constant, and one or more of the gate insulating layers in a peripheral portion may have, within at least a part of the peripheral portion, a second thickness thicker than the first thickness and a second dielectric constant greater than the first dielectric constant. The semiconductor substrate may include a first region being in contact with the gate insulating layers, a body region being in contact with the gate insulating layers under the first region, and a second region being in contact with the gate insulating layers under the body region.
Abstract:
A semiconductor device includes a semiconductor substrate having an element region and a terminal region located around the element region. The terminal region includes multiple guard rings and multiple first diffusion regions. When the semiconductor substrate is viewed in a plan view, one of the first diffusion regions is arranged correspondingly to one of the guard rings, and each of the guard rings is located in corresponding one of the first diffusion regions. A width of each of the first diffusion regions is larger than a width of corresponding one of the guard rings.
Abstract:
A top end of the p type connection layer is connected to the p type extension region. By forming such a p type extension region, it becomes possible to eliminate a region where an interval becomes large between the p type connection layer and the p type guard ring. Therefore, in the mesa portion, it is possible to prevent the equipotential line from excessively rising up, and it is possible to secure the withstand voltage.
Abstract:
An SiC semiconductor device has a p type region including a low concentration region and a high concentration region filled in a trench formed in a cell region. A p type column is provided by the low concentration region, and a p+ type deep layer is provided by the high concentration region. Thus, since a SJ structure can be made by the p type column and the n type column provided by the n type drift layer, an on-state resistance can be reduced. As a drain potential can be blocked by the p+ type deep layer, at turnoff, an electric field applied to the gate insulation film can be alleviated and thus breakage of the gate insulation film can be restricted. Therefore, the SiC semiconductor device can realize the reduction of the on-state resistance and the restriction of breakage of the gate insulation film.
Abstract:
In a method for producing an SiC semiconductor device, a p type layer is formed in a trench by epitaxially growing, and is then left only on a bottom portion and ends of the trench by hydrogen etching, thereby to form a p type SiC layer. Thus, the p type SiC layer can be formed without depending on diagonal ion implantation. Since it is not necessary to separately perform the diagonal ion implantation, it is less likely that a production process will be complicated due to transferring into an ion implantation apparatus, and thus manufacturing costs reduce. Since there is no damage due to a defect caused by the ion implantation, it is possible to reduce a drain leakage and to reliably restrict the p type SiC layer from remaining on the side surface of the trench.
Abstract:
An SiC semiconductor device has a p type region including a low concentration region and a high concentration region filled in a trench formed in a cell region. A p type column is provided by the low concentration region, and a p+ type deep layer is provided by the high concentration region. Thus, since a SJ structure can be made by the p type column and the n type column provided by the n type drift layer, an on-state resistance can be reduced. As a drain potential can be blocked by the p+ type deep layer, at turnoff, an electric field applied to the gate insulation film can be alleviated and thus breakage of the gate insulation film can be restricted. Therefore, the SiC semiconductor device can realize the reduction of the on-state resistance and the restriction of breakage of the gate insulation film.
Abstract:
In a silicon carbide semiconductor device, a p-type SiC layer is disposed in a corner of a bottom of a trench. Thus, even if an electric field is applied between a drain and a gate when a MOSFET is turned off, a depletion layer in a pn junction between the p-type SiC layer and an n− type drift layer greatly extends toward the n− type drift layer, and a high voltage caused by an influence of a drain voltage hardly enters a gate insulating film. Hence, an electric field concentration within the gate insulating film can be reduced, and the gate insulating film can be restricted from being broken. In this case, although the p-type SiC layer may be in a floating state, the p-type SiC layer is formed in only the corner of the bottom of the trench. Thus, the deterioration of the switching characteristic is relatively low.