Abstract:
Disclosed herein is a composition comprising a propylene based polymer; a polymeric ethylene ionomer; a vulcanizing agent that is a crosslinker and that is reactive with the polymeric ethylene ionomer; and a compatibilizer that is a crystalline block composite including (1) a crystalline ethylene based polymer, (2) a crystalline alpha-olefin based polymer derived from a C3-10 α-olefin, and (3) a block copolymer comprising 10 to 90 wt % of a crystalline ethylene block comprising at least 85 wt % of units derived from ethylene and 10 to 90 wt % of a crystalline alpha-olefin block comprising at least 90 wt % of units derived from the C3-10 α-olefin.
Abstract:
A hot melt adhesive composition includes (A) 10-95 wt % of a random or homogeneous propylene-based interpolymer having: (i) a comonomer content of at least one of C2 and C4-10 a-olefin of 7 wt % to 49 wt % based on the total weight of the propylene-based interpolymer, (ii) an MWD of 4 or less, (iii) a density of 0.90 g/cc or less, and (iv) a Brookfield viscosity of less than 50,000 centipoise, (B) 1-60 wt % of a crystalline block composite comprising: (1) a crystalline ethylene based polymer; (2) a crystalline alpha-olefin based polymer derived from at least one of a C3-10 a-olefin; and (3) a block copolymer comprising 10-90 wt % of a crystalline ethylene block comprising greater than 90 mol % units derived from ethylene and comprising 10-90 wt % of a crystalline alpha-olefin block comprising greater than 90 mol % units derived from at least one of a C3-10 a-olefin, (C) Optionally, from greater than zero to 70 wt % tackifier, and (D) Optionally, from greater than zero to 40 wt % of at least one selected from the group of a wax and an oil.
Abstract:
Disclosed are multilayer structures comprising a polyolefin layer, a tie layer and a barrier layer wherein the tie layer is a formulation comprising a crystalline block copolymer composite (CBC) comprising i) an ethylene polymer (EP) comprising at least 90 mol % polymerized ethylene; ii) an alpha-olefin-based crystalline polymer (CAOP) and iii) a block copolymer comprising (a) an ethylene polymer block comprising at least 90 mol % polymerized ethylene and (b) a crystalline alpha-olefin block (CAOB).
Abstract:
A process to produce an ionomer comprising reacting alkyl-cis-cyclooctene and cis-cyclooctene in a mole ratio from 1:0 to 0:1, in the presence of a difunctional chain transfer agent under ring opening metathesis polymerization conditions to form an unsaturated polyolefin reactive telechelic pre-polymer; hydrogenating the unsaturated polyolefin reactive telechelic pre-polymer to produce a hydrogenated polyolefin reactive telechelic pre-polymer; reacting the hydrogenated polyolefin reactive telechelic pre-polymer with at least one compound according to the formula aMx·b(R)y, wherein M is a metal, x is a charge of M, R is an alkyl, aryl, oxide, or fatty acid, y is a charge of R, a and b are integers of at least 1, and ax+by=0, to form an ionomer is provided. Further provided are ionomers produced thereby.
Abstract:
The present disclosure provides a composition comprising: a) a polypropylene; b) a polyolefin elastomer; and c) a block composite. The polyolefin elastomer has an I10/I2 from greater than 7.5 to 15.0. The composition may optionally include a filler.
Abstract translation:本公开提供了一种组合物,其包含:a)聚丙烯; b)聚烯烃弹性体; 和c)块复合材料。 聚烯烃弹性体具有大于7.5至15.0的I 10 / I 2。 组合物可以任选地包括填料。
Abstract:
The invention provides functionalized block composites and crystalline block composites as compatibilizers. In particular, the invention provides compositions of at least three polymers and a compatibilizer. The compatibilizer comprises a functionalized olefin-based polymer formed from at least (A) and (B): (A) a crystalline block composite comprising: a block copolymer comprising a propylene-based crystalline block and crystalline ethylene-based block; a propylene-based crystalline polymer; and, a crystalline ethylene-based polymer; and (B) at least one functionalization agent or a functionalized olefin-based polymer formed from at least (A) and (B): (A) a crystalline block composite comprising: a block copolymer comprising a propylene-based crystalline block and crystalline ethylene-based block; a propylene-based crystalline polymer; and, a crystalline ethylene-based polymer; and (B) at least one functionalization agent.
Abstract:
A process to produce a polyolefin reactive telechelic pre-polymer comprising reacting alkyl-cis-cyclooctene, and optionally cis-cyclooctene, in the presence of a multifunctional chain transfer agent possessing two or more amino groups wherein the two or more amino groups are protected by one or more protecting groups under ring opening metathesis polymerization conditions to form a dicarbamate telechelic unsaturated polyolefin pre-polymer is provided.
Abstract:
The present disclosure relates to a capped, multi- or dual-headed chain composition comprising derivatives of a strained olefin. The present disclosure further relates to a process for synthesizing the capped, multi- or dual-headed composition by using an organometallic compound and a co-catalyst in the presence of a catalyst precursor and a strained olefm. The present disclosure further relates to use of the compositions, as well as the process to make the same, in olefin polymerization.
Abstract:
Disclosed herein is a composition comprising a propylene based polymer; a polymeric ethylene ionomer; a vulcanizing agent that is a crosslinker and that is reactive with the polymeric ethylene ionomer; and a compatibilizer that is a crystalline block composite including (1) a crystalline ethylene based polymer, (2) a crystalline alpha-olefin based polymer derived from a C3-10 α-olefin, and (3) a block copolymer comprising 10 to 90 wt % of a crystalline ethylene block comprising at least 85 wt % of units derived from ethylene and 10 to 90 wt % of a crystalline alpha-olefin block comprising at least 90 wt % of units derived from the C3-10 α-olefin.
Abstract:
Embodiments of the invention provide a reinforced polypropylene comprising a multi-modal molecular weight distribution elastomer and a block composite.