Abstract:
A flat-panel field emission display comprises a luminescent faceplate, a rigid backplate, and an interposed or sandwiched emitter or cathode plate. A positioning spacer or connector ridge is formed on the rear surface of the faceplate to space the cathode plate a fixed distance behind the faceplate. A peripheral seal is formed between the faceplate and the backplate. The faceplate, backplate, and peripheral seal define an evacuated internal space which contains the cathode plate. The backplate is spaced behind the cathode plate to create a rearward vacuum space in which a getter is located.
Abstract:
A getter wire formed in a closed configuration in a vacuum sealed package is inductively heated until it evaporates, thereby forming a thin film on the inner walls of the package to getter gas molecules within the sealed package.
Abstract:
A wet chemical process is provided for treating an emitter formed on a substrate of a field emission display, the process comprises applying a solution including hydrogen to the emitter. In one embodiment of the invention, the steps of applying a solution comprises applying a solution of hydrofluoric acid to the emitter.
Abstract:
An anode of a flat panel display has a glass substrate, a patterned black grille on the substrate, a conductive layer covering the grille and the substrate, a phosphor layer covering, and one or more additional transparent layers that reduce the reflectance of the flat panel display from 14% down to 1%-4%. These additional layers are placed between the black matrix grille and the substrate, and between the conductive layer and phosphor layer. The two additional layers are selected and designed to reduce the reflectance that occurs at these respective interfaces.
Abstract:
The present invention provides an electroluminescent material that includes phosphor particles with an overlaying coating of a conductive inorganic oxide.
Abstract:
A portable computer that conserves power when the computer operates from its portable power source. The portable computer has a processor operatively coupled to an input device, an output device, and a memory device. The portable computer also includes a portable power source operatively coupled to the processor, and a selectively operable cooling system that is adapted to create a heat transfer zone in which heat dissipates from the processor. The cooling system has a cooling unit that may be selectively disabled in a desired power-saving mode during which the processor may continue to operate. The cooling unit is preferably disabled by electrically disconnecting the cooling unit from the portable power source to de-energize the cooling system, or by physically disconnecting the cooling system from the portable computer.
Abstract:
A wet chemical process is provided for treating an emitter formed on a substrate of a field emission display, the process comprises applying a solution including hydrogen to the emitter. In one embodiment of the invention, the steps of applying a solution comprises applying a solution of hydrofluoric acid to the emitter.
Abstract:
In one aspect, a method of detecting leaks of external atmospheric gases into a plasma reactor comprises monitoring an emission spectra of a plasma within the reactor for the presence of an external atmospheric constituent. In another aspect, a method of detecting an external atmospheric leak in a plasma enhanced reactor comprising detecting photon emission of excited nitrogen present within the reactor. In yet another aspect, a leak detection system of continuously detecting for leaks of external atmospheric gases into a plasma reactor comprises: a) an optical detection apparatus in optical communication with a plasma in the plasma reactor; b) the optical detection apparatus being configured to monitor an emission spectra of the plasma for a signal due to presence of an external atmospheric constituent within the plasma and for a signal due to a non-atmospheric constituent within the plasma; and c) an alarm configured to generate a response when the relative size of the external atmospheric constituent signal to the non-atmospheric constituent signal exceeds a predetermined value.
Abstract:
The disclosure describes a method of attaching and electrically connecting first and second planar substrates, wherein the first and second substrates have inwardly-facing surfaces with matching patterns of bond pads. The method includes adjusting a wire bonder's tear. length to a setting which leaves a projecting tail of severed bond wire at a terminating wedge bond connection. Further steps include making a wedge bond to an individual bond pad of the first planar substrate with bond wire from the wire bender, and then severing the bond wire adjacent said wedge bond. The adjusted tear length of the wire bender results in a tail of severed bond wire which projects from said wedge bond and said individual bond pad. Subsequent steps include positioning the first and second planar substrates with their inwardly-facing surfaces facing each other, aligning the matching bond pad patterns of the first and second planar substrates, and pressing the first and second planar substrates against each other. The bond wire tail deforms between the bond pads of the first and second planar substrates to conductively bond therebetween.
Abstract:
A method for forming a substantially uniform array of atomically sharp emitter tips, comprising: patterning a substrate with a mask, thereby defining an array; isotropically etching the array to form pointed tips; and removing the mask when substantially all of the tips have become sharp. A mask having a composition and dimensions which enable the mask to remain balanced on the apex of the tips until all of the tips are of substantially the same shape is used to form the array of substantially uniform tips.