Abstract:
A built-in self test for receiver operation is provided through a testing method that evaluates characteristics of a received signal eye diagram. The receiver receives a serial data signal and applies compensation to that received serial data signal to generate a compensated serial data signal. The properties of an eye diagram associated with the compensated serial data signal are measured. In this context, certain desired eye diagram properties are characterized by parameters indicative of pass/fail criteria for receiver testing. The measured eye diagram properties are then compared against the parameters. A receiver testing conclusion signal is then output based on results of the comparison.
Abstract:
In an integrated decision feedback equalizer and clock and data recovery circuit one or more flip-flops and/or latches may be shared. One or more flip-flops and/or latches may be used in retiming operations in a decision feedback equalizer and in phase detection operations in a clock recovery circuit. Outputs of the flip-flops and/or latches may be used to generate feedback signals for the decision feedback equalizer. The output of a flip-flop and/or latches may be used to generate signals that drive a charge pump in the clock recovery circuit.
Abstract:
The invention relates to a Class AB operational amplifier providing both output gain enhancement and adaptative output bias. The operational amplifier includes first and second output terminals; a main differential stage having first and second differential inputs and a first differential output stage; a first adaptatively biased, boosted output stage coupling the first differential output stage to the output terminal. Each output stage includes a first NMOS output transistor having a control terminal, a first terminal coupled to the respective output terminal, and a second terminal, and includes a first output amplifier having a first input coupled to the second terminal of the first output transistor, a second input coupled to the first differential output stage to provide adaptative bias for the first boosted output stage, and an output coupled to the control terminal of the first output transistor.
Abstract:
A device includes a first inductor positioned on a first substrate. The first inductor has at least one turn in a plane that is perpendicular to a plane of the first substrate. The first inductor is positioned for near field coupling with a second inductor. The second inductor is positioned on a second substrate, with at least one turn that is in a plane perpendicular to a plane of the second substrate. The second inductor is substantially parallel to the first inductor. Such an arrangement may be used for near field coupling, including edge-to-edge coupling, between two integrated circuits.
Abstract:
Apparatus and methods are taught for quickly determining whether a Loss of Signal (LOS) condition has occurred for a receiver which includes an internal reference clock, a LOS circuit and a Clock and Data Recovery (CDR) circuit. The CDR circuit recovers the clock and data of an incoming signal. However, the LOS circuit can determine whether a received incoming signal includes an active signal, independent of said CDR circuit such that it samples said incoming signal utilizing said internal reference clock to determine a loss of signal prior to said CDR recovering the clock of said incoming signal. The LOS circuit includes an analog voltage threshold stage which samples the incoming signal, and produces at least one sample stream indicative of transitions in the incoming signal. The LOS circuit further includes a digital transition stage which counts transitions in order to discriminate between an active signal and noise.
Abstract:
Apparatus and methods are taught for quickly determining whether a Loss of Signal (LOS) condition has occurred for a receiver which includes an internal reference clock, a LOS circuit and a Clock and Data Recovery (CDR) circuit. The CDR circuit recovers the clock and data of an incoming signal. However, the LOS circuit can determine whether a received incoming signal includes an active signal, independent of said CDR circuit such that it samples said incoming signal utilizing said internal reference clock to determine a loss of signal prior to said CDR recovering the clock of said incoming signal. The LOS circuit includes an analog voltage threshold stage which samples the incoming signal, and produces at least one sample stream indicative of transitions in the incoming signal. The LOS circuit further includes a digital transition stage which counts transitions in order to discriminate between an active signal and noise.
Abstract:
A first device transmits data over a first branch of a communications link toward a second device. That second device loops the received data pattern back over a second branch of the communications link. A bit error rate of the looped back data pattern is determined and a pre-emphasis applied to the transmitted data pattern is adjusted in response thereto. The first device further perturbs the data pattern communications signal so as to increase the bit error rate. The pre-emphasis is adjusted so as to reduce the determined bit error rate in the looped back data pattern in the presence of the perturbation. The steps for perturbing the signal and adjusting the pre-emphasis are iteratively performed, with the perturbation of the signal increasing with each iteration and adjustment of the pre-emphasis being refined with each iteration. The signal is perturbing by injecting modulation jitter into the signal (increasing each iteration) and adjusting amplitude of the signal (decreasing each iteration).
Abstract:
A high-speed bit stream interface module interfaces a high-speed communication media to a communication Application Specific Integrated Circuit (ASIC) via a Printed Circuit Board (PCB). The high-speed bit stream interface includes a line side interface, a board side interface, and a signal conditioning circuit. The signal conditioning circuit services each of an RX path and a TX path and includes a limiting amplifier and a clock and data recovery circuit. The signal conditioning circuit may also include an equalizer and/or an output pre-emphasis circuit. The limiting amplifier applies respective gains to the RX path and to the TX path that are based upon respective dynamic ranges of the incoming signals.
Abstract:
Methods, systems and devices for dynamically controlling resolution of an analog-to-digital converter (ADC). The ADC receives an analog input signal and outputs digital data. A statistical unit coupled to the ADC obtains samples of the output signal and transmits a control signal to the ADC to adjust the resolution of the ADC. The control signal is generated by the statistical unit based on a comparison of at least one performance indicator with a target performance level. The at least one performance indicator is calculated using the samples.
Abstract:
A high-speed bit stream interface module interfaces a high-speed communication media to a communication Application Specific Integrated Circuit (ASIC) via a Printed Circuit Board (PCB). The high-speed bit stream interface includes a line side interface, a board side interface, and a signal conditioning circuit. The signal conditioning circuit services each of an RX path and a TX path and includes a limiting amplifier and a clock and data recovery circuit. The signal conditioning circuit includes an AGC loop, an equalizer, and an equalizer feedback loop. The AGC loop includes a gain path and a feedback path that couples to the output of the equalizer. The equalizer feedback loop couples to the output of the equalizer and produces spectral shaping control settings that the equalizer uses to produce an equalized high-speed serial bit stream at an equalizer output.