Abstract:
Lithographic apparatus includes a substrate table and a motion control system for controlling a movement of the substrate table. The motion control system includes at least 3 position detectors constructed for detecting a position of the substrate table. For measuring a position and orientation of the substrate table, each position detector comprises an optical encoder of a single dimensional or multi dimensional type, the optical encoders being arranged for providing together at least 6 position values, at least one position value being provided for each of the 3 dimensions. 3 or more of the at least 3 optical encoders being connected to the substrate table at different locations in the 3 dimensional coordinate system. The motion control system is arranged to calculate the position of the substrate table in the 3 dimensional coordinate system from a subset of at least 3 of the 6 position values and to calculate an orientation of the substrate table with respect to the coordinate system from another subset of at least 3 of the 6 position values. Further, a method for calibrating the position detectors is described.
Abstract:
A lithographic apparatus is disclosed. The apparatus includes a projection system configured to project a patterned radiation beam onto a target portion of a substrate. The projection system includes a housing and a plurality of optical elements arranged in the housing. The apparatus also includes an inlet for feeding conditioned gas to the housing and a gas exhaust for exhausting the conditioned gas from the housing for providing a gas conditioned environment in the housing. At least one gate is provided for providing communication of the gas conditioned environment with ambient atmosphere. The gate is arranged to provide a predetermined leakage of the conditioned gas to the ambient atmosphere.
Abstract:
A coil assembly has at least two coils which are arranged in a common plane, and partially overlap in crossover sections of the coils. The crossover sections have a reduced height, which results in a reduced total height of the coil assembly. This leads to a more compact coil assembly, and hence to better dynamic characteristics of a positioning device in which the coil assembly is applied.
Abstract:
An imaging optical system has a plurality of mirrors which image an object field in an object plane in an image field in an image plane. The imaging optical system has a pupil obscuration. The last mirror in the beam path of the imaging light between the object field and the image field has a through-opening for the passage of the imaging light. A penultimate mirror of the imaging optical system in the beam path of the imaging light between the object field and the image field has no through-opening for the passage of the imaging light. The result is an imaging optical system that provides a combination of small imaging errors, manageable production and a good throughput for the imaging light.
Abstract:
An imaging optical system has a plurality of mirrors which image an object field in an object plane in an image field in an image plane. The imaging optical system has a pupil obscuration. The last mirror in the beam path of the imaging light between the object field and the image field has a through-opening for the passage of the imaging light. A penultimate mirror of the imaging optical system in the beam path of the imaging light between the object field and the image field has no through-opening for the passage of the imaging light. The result is an imaging optical system that provides a combination of small imaging errors, manageable production and a good throughput for the imaging light.
Abstract:
A lithographic apparatus is disclosed that has a heater configured to supply energy to a patterning device to heat the patterning device to form a desired thermal distortion pattern of the patterning device and a controller configured to effect an optical correction in the apparatus corresponding to the desired thermal distortion pattern to reduce the effect of thermal distortion of the patterning device on a pattern.
Abstract:
In order to improve the productivity of a lithographic apparatus, a stage apparatus for holding two patterning devices is described. The patterning devices are arranged such that the distance between the patterns in the scanning direction corresponds to the length of the pattern in the scanning direction. By doing so, an improved exposure sequence may be performed by exposing a first die with a first pattern, skipping a second die adjacent to the first die, and exposing a third die adjacent to the second die using a second pattern.
Abstract:
An apparatus for changing an aggregate intensity of a light within an illumination field of a photolithography system having a blade structure and a first actuator. The blade structure is configured to be positioned along an optical path of the photolithography system between an illumination system and a reticle stage so that, when the illumination system provides the light having the illumination field, the blade structure is substantially at a center of the illumination field and a first portion of the light within the illumination field impinges upon the blade structure. The first actuator is coupled between a first portion of the blade structure and a frame of the photolithography system and is configured to move at least the first portion of the blade structure in a first direction so that a second portion of the light within the illumination field impinges upon the blade structure.
Abstract:
In order to improve the productivity of a lithographic apparatus, a stage apparatus for holding two patterning devices is described. The patterning devices are arranged such that the distance between the patterns in the scanning direction corresponds to the length of the pattern in the scanning direction. By doing so, an improved exposure sequence may be performed by exposing a first die with a first pattern, skipping a second die adjacent to the first die, and exposing a third die adjacent to the second die using a second pattern.
Abstract:
A lithographic apparatus includes a displacement measuring system configured to measure the position of a substrate table in at least three degrees of freedom. The displacement measuring system includes a first x-sensor configured to measure the position of the substrate table in a first direction and a first and a second y-sensor configured to measure the position of the substrate table in a second direction. Said displacement measuring system further comprises a second x-sensor. The first and second x-sensor and first and second y-sensors are encoder type sensors configured to measure the position of each of the sensors with respect to at least one grid plate. The displacement measuring system is configured to selectively use, depending on the position of the substrate table, three of the first and second x-sensors and the first and second y-sensors to determine the position of the substrate table in three degrees of freedom.