Abstract:
The present invention relates devices capable of continuous and simultaneous expression of components of a multi-part biomedical composition with variable mixing ratios. The device has at least two syringes that contain the inter-reactive components of the multi-part biomedical composition. At least the barrel of the first syringe has a first retention compartment having a cross-sectional area dimension that is larger than the cross-sectional area of a second retention compartment. The first piston has a cross-sectional dimension that matches the inside cross-sectional dimension of the small dimensioned retention compartment, while a ring-shaped gasket is located within the large dimensioned retention compartment and has an outside cross-sectional dimension that matches an interior dimension of the large dimension retention compartment.
Abstract:
Novel surgical sutures and novel medical devices made from novel semi-crystalline, glycolide-rich A-B-A triblock copolymers of glycolide and lactide, wherein said B-segment is a fully amorphous random copolymer of glycolide and lactide, for long term medical applications are disclosed. The novel polymer compositions are useful for long term absorbable surgical sutures, meshes and other medical devices, especially for patients with compromised healing. The novel sutures have improved properties and improved breaking strength retention, while still substantially absorbing within about a 120-day period post-implantation.
Abstract:
The present invention relates devices capable of continuous and simultaneous expression of components of a multi-part biomedical composition with variable mixing ratios. The device has at least two syringes that contain the inter-reactive components of the multi-part biomedical composition. At least the barrel of the first syringe has a first retention compartment having a cross-sectional area dimension that is larger than the cross-sectional area of a second retention compartment. The first piston has a cross-sectional dimension that matches the inside cross-sectional dimension of the small dimensioned retention compartment, while a ring-shaped gasket is located within the large dimensioned retention compartment and has an outside cross-sectional dimension that matches an interior dimension of the large dimension retention compartment.
Abstract:
Novel absorbable polymer blends are disclosed. The blends are useful for manufacturing medical devices having engineered degradation and breaking strength retention in vivo. The blends consist of a first absorbable polymeric component and a second absorbable polymeric component. The weight average molecular weight of the first polymeric component is higher than the weight average molecular weight of the second polymeric component. At least at least one of said components is at least partially end-capped by a carboxylic acid group. Further aspects are medical devices made therefrom.
Abstract:
Exoskeletal devices or sleeves that can be used with the delivery tube of an applicator device to help dispense fluids, typically flowable biocompatible materials such as hemostatic agents, adhesives, or sealants, onto specific sites in the human body for a medical reason are disclosed. The exoskeletal devices or sleeves are rigid, pre-shaped, and snappably or slidably affixed to the delivery tube. The exoskeletal devices or sleeves do not come into contact with the flowable biocompatible fluid being dispensed, and they can be placed at any position along the delivery tube to address different application situations. Once the exoskeletal device or sleeve is in place, it can optionally be locked onto the delivery tube to prevent further sliding under stresses when pushed against tissue. Multiple exoskeletal devices or sleeves can also be used to achieve more complicated shapes for hard-to-reach anatomical sites.
Abstract:
Novel bioabsorbable polymeric blends are disclosed. The blends have a first component that is a polylactide polymer or a copolymer of lactide and glycolide and a second component that is poly(p-dioxanone) polymer. The novel polymeric blends provide medical devices having dimensional stability. Also disclosed are novel bioabsorbable medical devices made from these novel polymer blends, as well as novel methods of manufacture.
Abstract:
Novel absorbable polymeric blends made from components wherein at least one of the components is synthesized using mixtures of mono- and di-functional initiators are disclosed. The blends have a first component that is a polylactide polymer or a copolymer of lactide and glycolide and a second component that is either poly(p-dioxanone) homopolymer, or a poly(p-dioxanone-co-glycolide) copolymer. The novel polymeric blends provide medical devices having dimensional stability. Also disclosed are novel absorbable medical devices made from these novel polymer blends, as well as novel methods of manufacture.
Abstract:
Novel surgical sutures and novel medical devices made from novel semi-crystalline, glycolide-rich A-B-A triblock copolymers of glycolide and lactide, wherein said B-segment is a fully amorphous random copolymer of glycolide and lactide, for long term medical applications are disclosed. The novel polymer compositions are useful for long term absorbable surgical sutures, meshes and other medical devices, especially for patients with compromised healing. The novel sutures have improved properties and improved breaking strength retention, while still substantially absorbing within about a 120-day period post-implantation.
Abstract:
Absorbable medical devices based on novel foams and films made from semi-crystalline, segmented copolymers of lactide and epsilon-caprolactone exhibiting long term absorption characteristics are disclosed. Also disclosed are methods of producing said foams and films, and useful polymer solutions.
Abstract:
Absorbable medical devices based on novel foams and films made from semi-crystalline, segmented copolymers of lactide and epsilon-caprolactone exhibiting long term absorption characteristics are disclosed. Also disclosed are methods of producing said foams and films, and useful polymer solutions.