摘要:
A novel FLASH-based EEPROM cell, decoder, and layout scheme are disclosed to eliminate the area-consuming divided triple-well in cell array and allows byte-erase and byte-program for high P/E cycles. Furthermore, the process-compatible FLASH cell for EEPROM part can be integrated with FLASH and ROM parts so that a superior combo, monolithic, nonvolatile memory is achieved. Unlike all previous arts, the novel combo nonvolatile memory of the present invention of ROM, EEPROM and FLASH or combination of any two is made of one unified, fully compatible, highly-scalable BN+cell and unified process. In addition, its cell operation schemes have zero array overhead and zero disturbance during P/E operations. The novel combo nonvolatile memory is designed to meet the need in those markets requiring flexible write size in units of bytes, pages and blocks at a lower cost.
摘要:
A novel FLASH-based EEPROM cell, decoder, and layout scheme are disclosed to eliminate the area-consuming divided triple-well in cell array and allows byte-erase and byte-program for high P/E cycles. Furthermore, the process-compatible FLASH cell for EEPROM part can be integrated with FLASH and ROM parts so that a superior combo, monolithic, nonvolatile memory is achieved. Unlike all previous arts, the novel combo nonvolatile memory of the present invention of ROM, EEPROM and FLASH or combination of any two is made of one unified, fully compatible, highly-scalable BN+ cell and unified process. In addition, its cell operation schemes have zero array overhead and zero disturbance during P/E operations. The novel combo nonvolatile memory is designed to meet the need in those markets requiring flexible write size in units of bytes, pages and blocks at a lower cost.
摘要:
A nonvolatile memory device includes multiple independent nonvolatile memory arrays that concurrently for parallel reading and writing the nonvolatile memory arrays. A serial interface communicates commands, address, device status, and data between a master device and nonvolatile memory arrays for concurrently reading and writing of the nonvolatile memory arrays and sub-arrays. Data is transferred on the serial interface at the rising edge and the falling edge of the synchronizing clock. The serial interface transmits a command code and an address code from a master device and transfers a data code between the master device and the nonvolatile memory device, wherein the data code has a length that is determined by the command code and a location determined by the address code. Reading one nonvolatile memory array may be interrupted for reading another. One reading operation has two sub-addresses with one transferred prior to a command.
摘要:
A novel FLASH-based EEPROM cell, decoder, and layout scheme are disclosed to eliminate the area-consuming divided triple-well in cell array and allows byte-erase and byte-program for high P/E cycles. Furthermore, the process-compatible FLASH cell for EEPROM part can be integrated with FLASH and ROM parts so that a superior combo, monolithic, nonvolatile memory is achieved. Unlike all previous arts, the novel combo nonvolatile memory of the present invention of ROM, EEPROM and FLASH or combination of any two is made of one unified, fully compatible, highly-scalable BN+ cell and unified process. In addition, its cell operation schemes have zero array overhead and zero disturbance during P/E operations. The novel combo nonvolatile memory is designed to meet the need in those markets requiring flexible write size in units of bytes, pages and blocks at a lower cost.
摘要:
A combination EEPROM and Flash memory is described containing cells in which the stacked gate transistor of the Flash cell is used in conjunction with a select transistor to form an EEPROM cell. The select transistor is made sufficiently small so as to allow the EEPROM cells to accommodate the bit line pitch of the Flash cell, which facilitates combining the two memories into memory banks containing both cells. The EEPROM cells are erased by byte while the Flash cells erased by block. The small select transistor has a small channel length and width, which is compensated by increasing gate voltages on the select transistor and pre-charge bitline during CHE program operation.
摘要:
In the present invention programming a plurality of MLC flash memory cells is done in parallel using a channel programming operation by applying a high positive voltage to a word line and positive voltages to the bit lines connected to cells to be programmed. The positive bit line voltages combined with the word line voltage create a channel voltage that is sufficient to program a required Vt level into each cell in parallel during a predetermined amount of time. Using a high positive word line voltage turns on the channel of a cell being programmed and eliminates potential breakdown condition, band to band tunneling current, channel pinch through and hole injection into the gate insulator, while allowing a small symmetrical cell that has low power consumption and a higher endurance cycle.
摘要:
A memory cell device is achieved. The memory cell device comprises a first transistor having gate, drain, and source. A second transistor has gate, drain, and source. The first transistor drain is coupled to an array bit line. The second transistor source is coupled to an array source line. The first transistor source is coupled to the second transistor drain. The first transistor and the second transistor comprise one Flash transistor and one mask ROM transistor. The programmed state of the mask ROM transistor can be read.
摘要:
In this invention a stacked gate flash memory cell is disclosed which has a lightly doped drain (LDD) on the drain side of the device and uses the source to both program using hot electron generation and erase the floating gate using Fowler-Nordheim-tunneling. Disturb conditions are reduced by taking advantage of the LDD and the biasing of the cell that uses the source for both programming and erasure. The electric field of the drain is greatly reduced as a result of the LDD which reduces hot electron generation. The LDD also helps reduce bit line disturb conditions during programming. A transient bit line disturb condition in a non-selected cell is minimized by preconditioning the bit line to the non-selected cell to Vcc.
摘要:
In the present invention is disclosed a flash memory for simultaneous read and write operations. The memory is partitioned into a plurality of sectors each of which have a sector decoder. The sector decoder connects a plurality of main bit lines to a plurality of sub bit lines contained within each memory sector A 21 decoder is used to demonstrate the invention although other decoders including a 2M decoder and a hierarchical type decoder can be used. The memory array can be configured from a variety of architectures, including NOR, OR, NAND, AND, Dual-String and DINOR. The memory cells can be formed from a variety of array structures including ETOX, FLOTOX, EPROM, EEPROM, Split-Gate, and PMOS.
摘要:
A flash memory with a flexible erasing size includes a first bank of flash transistors and a second bank of flash transistors. Each bank of flash transistors forms a plurality of rows and a plurality of columns, each transistor having a gate, drain and source, where the gates of transistors in each row are coupled to common wordlines, the drains of transistors in each column are coupled to common bitlines and the sources of the transistors in the first bank are all coupled to a first sourceline and the sources of the transistors in the second bank are all coupled to a second sourceline. A wordline decoder is coupled to the wordlines and configured to receive a wordline address signal and to decode the wordline address signal to select a wordline, where the wordline decoder includes a wordline latch configured to latch the selected wordline. A sourceline decoder is coupled to the sourcelines and configured to receive a sourceline address signal and to decode the sourceline address signal to select a sourceline, where the sourceline decoder includes a sourceline latch configured to latch the selected sourceline. A bitline decoder is coupled to the bitlines and configured to receive a bitline address signal and to decode the bitline address signal to latch a selected bitline, where the bitline decoder includes a bitline latch configured to latch the selected bitline.